This study reports a hub-spoke type joint torque sensor involving strain gauges made of multiwalled carbon nanotubes (MWCNT). We developed the novel joint torque sensor for robots by means of MWCNT/epoxy strain sensors (0.8 wt%, gauge factor 2) to overcome the limits of conventional foil strain gauges. Solution mixing process was hired to fabricate a liquid strain sensor that can easily be installed on any complicated surfaces. We painted the MWCNT/epoxy mixing liquid on the hub-spoke type joint torque sensor to form the piezoresistive strain gauges. The painted sensor converted its strain into torque by mean of the installed hub-spoke structure after signal processing. We acquired sufficient torque voltage responses from the painted MWCNT/epoxy strain sensor.
We presented a novel impact paint sensor made of piezoresistive nano-carbon composites and studied its characteristics. The paint sensors were fabricated with multi-walled carbon nanotube (MWCNT), exfoliated graphite nano-platelets (xGnP), and a hybrid type of the two nano-carbon fillers and were sprayed onto a carbon fiber-reinforced plastic panel for lab testing. In ball drop impact test, the MWCNT-xGnP-based hybrid sensor showed the best characteristics in impact energy sensing within the range 0.07-1.0 J. We also studied the piezoresistive mechanism due to dimensional variations of nano carbon isotopes for sensor design. Piezorestivity of nano-carbon sensor was significantly dominated the electrical contact variation of the electrical fillers in a matrix. This study is expected to provide a feasibility test for designing impact paint sensors with optimized sensitivity for a composite structural health monitoring.
This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.