Decades of extensive research have matured the development of carbon nanotubes (CNTs). Still, the properties of macroscale assemblages, such as sheets of carbon nanotubes, are not good enough to satisfy many applications. This paper gives an overview of different approaches to synthesize CNTs and then focuses on the floating catalyst method to form CNT sheets. A method is also described in this paper to modify the properties of macroscale carbon nanotube sheets produced by the floating catalyst method. The CNT sheet is modified to form a carbon nanotube hybrid (CNTH) sheet by incorporating metal, ceramic, or other types of nanoparticles into the high-temperature synthesis process to improve and customize the properties of the traditional nanotube sheet. This paper also discusses manufacturing obstacles and the possible commercial applications of the CNT sheet and CNTH sheet. Manufacturing problems include the difficulty of injecting dry nanoparticles uniformly, increasing the output of the process to reduce cost, and safely handling the hydrogen gas generated in the process. Applications for CNT sheet include air and water filtering, energy storage applications, and compositing CNTH sheets to produce apparel with anti-microbial properties to protect the population from infectious diseases. The paper also provides an outlook towards large scale commercialization of CNT material.
We presented a novel impact paint sensor made of piezoresistive nano-carbon composites and studied its characteristics. The paint sensors were fabricated with multi-walled carbon nanotube (MWCNT), exfoliated graphite nano-platelets (xGnP), and a hybrid type of the two nano-carbon fillers and were sprayed onto a carbon fiber-reinforced plastic panel for lab testing. In ball drop impact test, the MWCNT-xGnP-based hybrid sensor showed the best characteristics in impact energy sensing within the range 0.07-1.0 J. We also studied the piezoresistive mechanism due to dimensional variations of nano carbon isotopes for sensor design. Piezorestivity of nano-carbon sensor was significantly dominated the electrical contact variation of the electrical fillers in a matrix. This study is expected to provide a feasibility test for designing impact paint sensors with optimized sensitivity for a composite structural health monitoring.
The development of a 3D-Printed Load Cell (PLC) was studied using a nanocarbon composite strain sensor (NCSS) and a 3D printing process. The miniature load cell was fabricated using a low-cost LCD-based 3D printer with UV resin. The NCSS composed of 0.5 wt% MWCNT/epoxy was used to create the flexure of PLC. PLC performance was evaluated under a rated load range; its output was equal to the common value of 2 mV/V. The performance was also evaluated after a calibration in terms of non-linearity, repeatability, and hysteresis, with final results of 2.12%, 1.60%, and 4.42%, respectively. Creep and creep recovery were found to be 1.68 (%FS) and 4.16 (%FS). The relative inferiorities of PLC seem to originate from the inherent hyper-elastic characteristics of polymer sensors. The 3D PLC developed may be a promising solution for the OEM/design-in load cell market and may also result in the development of a novel 3D-printed sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.