One of the main shortcomings of event data in football, which has been extensively used for analytics in the recent years, is that it still requires manual collection, thus limiting its availability to a reduced number of tournaments. In this work, we propose a deterministic decision tree-based algorithm to automatically extract football events using tracking data, which consists of two steps: (1) a possession step that evaluates which player was in possession of the ball at each frame in the tracking data, as well as the distinct player configurations during the time intervals where the ball is not in play to inform set piece detection; (2) an event detection step that combines the changes in ball possession computed in the first step with the laws of football to determine in-game events and set pieces. The automatically generated events are benchmarked against manually annotated events and we show that in most event categories the proposed methodology achieves $$+90\%$$ + 90 % detection rate across different tournaments and tracking data providers. Finally, we demonstrate how the contextual information offered by tracking data can be leveraged to increase the granularity of auto-detected events, and exhibit how the proposed framework may be used to conduct a myriad of data analyses in football.
One of the main shortcomings of event data in football, which has been extensively used for analytics in the recent years, is that it still requires manual collection, thus limiting its availability to a reduced number of tournaments. In this work, we propose a computational framework to automatically extract football events using tracking data, namely the coordinates of all players and the ball. Our approach consists of two models: (1) the possession model evaluates which player was in possession of the ball at each time, as well as the distinct player configurations in the time intervals where the ball is not in play; (2) the event detection model relies on the changes in ball possession to determine in-game events, namely passes, shots, crosses, saves, receptions and interceptions, as well as set pieces. First, analyze the accuracy of tracking data for determining ball possession, as well as the accuracy of the time annotations for the manually collected events. Then, we benchmark the auto-detected events with a dataset of manually annotated events to show that in most categories the proposed method achieves +90% detection rate. Lastly, we demonstrate how the contextual information offered by tracking data can be leveraged to increase the granularity of auto-detected events, and exhibit how the proposed framework may be used to conduct a myriad of data analyses in football.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.