The surface of nanoparticles (NPs) get coated by a wide range of biomolecules, upon exposure to biological fluids. It is now being increasingly accepted that NPs with particular physiochemical properties have a capacity to induce conformational changes to proteins and therefore influence their biological fates, we hypothesized that the gold NP’s metal surface may also be involved in the observed Fg unfolding and inflammatory response. To mechanistically test this hypothesis, we probed the interaction of Fg with gold surfaces using molecular dynamic simulation (MD) and revealed that the gold surface has a capacity to induce Fg conformational changes in favor of inflammation response. As the integrity of coatings at the surface of ultra-small gold NPs are not thorough, we also hypothesized that the ultra-small gold NPs have a capacity to induce unfolding of Fg regardless of the composition and surface charge of their coatings. Using different surface coatings at the surface of ultra-small gold NPs, we validated this hypothesis. Our findings suggest that gold NPs may cause unforeseen inflammatory effects, as their surface coatings may be degraded by physiological activity.
Spherical nanocarriers can lead to a bright future to lessen problems of virus infected people. Spherical polyethylene glycol (PEG) and spherical silica (SiO2) are novel attractive nanocarriers as drug delivery agents, especially they are recently noticed to be reliable for antiviral drugs like anti-HIV, anti-covid-19, etc. Lamivudine (3TC) is used as a first line drug for antiviral therapy and the atomic view of 3TC-PEG/SiO2 complexes enable scientist to help improve treatment of patients with viral diseases. This study investigates the interactions of 3TC with Spherical PEG/SiO2, using molecular dynamics simulations. The mechanism of adsorption, the stability of systems and the drug concentration effect are evaluated by analyzing the root mean square deviation, the solvent accessible surface area, the radius of gyration, the number of hydrogen bonds, the radial distribution function, and Van der Waals energy. Analyzed data show that the compression of 3TC is less on PEG and so the stability is higher than SiO2; the position and intensity of the RDF peaks approve this stronger binding of 3TC to PEG as well. Our studies show that PEG and also SiO2 are suitable for loading high drug concentrations and maintaining their stability; therefore, spherical PEG/SiO2 can reduce drug dosage efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.