In this research, edible films were produced using native wheat starch with different concentrations of glycerol (0, 20, 30, 40 and 50% of starch dry weight basis). Starch films were prepared by casting after gelatinization. The effects of glycerol on the microstructure, crystallinity, solubility in water, moisture absorption, water vapor permeability, optical and mechanical properties of the films at 25C and relative humidity range of 11-84% were investigated. The increase of glycerol content led to increase in film solubility, lightness, more compact structures and water absorption at 25C. The lowest water vapor permeabilities were found for the films with 20 and 30% glycerol. Glycerol did not change X-ray patterns of starch films; however, the degree of crystallinity reduced. In general, for all starch films stress at break and Young's modulus decreased and elongation increased when glycerol concentration and/or RH increased. PRACTICAL APPLICATIONThe inclusion of glycerol into starch films prepared by casting can increase film solubility, lightness, water absorption and produce more compact structures. Glycerol up to 30% reduced the water vapor permeability of starch films and more glycerol increased this parameter. Glycerol decreased stress at break and Young's modulus of starch films; however, elongation increased. Glycerol is able to improve some mechanical properties of the starch films. bs_bs_banner A journal to advance the fundamental understanding of food texture and sensory perception Journal of Texture Studies ISSN 1745-4603
The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid (SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was examined. Interactions and miscibility of partaking components was studied by using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the important attributes of resulting edible film. TS and EAB of film were improved significantly (p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween20) provided film with good physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular interactions between RS-ι-car have a great impact on the film properties confining the compatibility and miscibility of mixed polysaccharide. Results of the study offers new biodegradable formulation for application on fruit and vegetables.
Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum"
The influence of different plasticizers (glycols, sugars and polyols) on the moisture sorption, mechanical, physical, optical, and microstructure characteristics of pea starch-guar gum (PSGG) film was studied. All plasticizers formed homogeneous, transparent, and smooth films, while PEG-400 did not produce film with suitable characteristics. Fourier transform infrared (FTIR) spectroscopy results indicated some interaction between plasticizers and the polymers. Scanning electron microscopy (SEM) observations of the films presented surfaces without cracks, breaks, or openings which were indicator of the miscibility and compatibility of employed plasticizers with PSGG films. The results showed that the films containing plasticizers with higher functional groups had lower equilibrium moisture content at aw <0.4. In general, a reduction in tensile strength and Young's modulus and an increase in elongation at break were detected when molecular weight of plasticizers and relative humidity increased in all film formulations. Films plasticized with monosaccharide showed similar mechanical properties to those with sorbitol, but lower solubility and water vapour permeability (WVP), higher transparency and moisture content than the sorbitol-plasticized films. The most noticeable plasticization effect was exerted by following order: glycerol > EG > PG > xylitol > fructose > sorbitol > mannitol > galactose > glucose > sucrose > maltitol.
The mechanical properties and moisture sorption at relative humidity (RH) range of 11–94%, water vapor permeability (WVP), solubility in water and color of the pea starch films as a function of glycerol were examined. The results showed that increasing the concentration of plasticizer resulted in improvement of the tensile strength of the films at RH <43%, the percent elongation as well as the deformation at break at RH <84%. Increasing plasticizer content and RH also resulted in films with lower Young's modulus, lower puncture force, but higher puncture deformation. Furthermore, increasing plasticizer content led to the films with more opaque appearance. Films prepared with 15 and 25% glycerol had lower WVP in comparison with unplasticized film. This study provides information regarding the advantageous or disadvantageous of possible application of pea starch films in food packaging industry. Practical Application Starch edible films have been utilized for packaging technologies and edible coatings. Pea starch has been found to produce the films with improved physical and mechanical properties in comparison with films prepared from other starches due to high amount of amylose. The development of pea starch film with improved functions affects its application. Pea starch edible films may find practical applications in the poultry, meat, seafood, fruit, vegetable, grains and candies industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.