The main aim of this study was to develop rice starch (RS), ι-carrageenan (ι-car) based film. Different formulations of RS (1-4%, w/w), ι-car (0.5-2%, w/w) was blended with stearic acid (SA; 0.3-0.9%, w/w) and glycerol (1%, w/w) as a plasticizer. The effect of film ingredients on the thickness, water vapour permeability (WVP), film solubility (FS), moisture content (MC), colour, film opacity (FO), tensile strength (TS), elongation-at-break (EAB) of film was examined. Interactions and miscibility of partaking components was studied by using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Hydrocolloid suspension solution of mix polysaccharides imparted a significant impact (p<0.05) on the important attributes of resulting edible film. TS and EAB of film were improved significantly (p<0.05) when ι-car was increased in the film matrix. Formulation F1 comprising 2% ι-car, 2% RS, 0.3% SA, Gly 30% w/w and 0.2% surfactant (tween20) provided film with good physical, mechanical and barrier properties. FT-IR and XRD results reveal that molecular interactions between RS-ι-car have a great impact on the film properties confining the compatibility and miscibility of mixed polysaccharide. Results of the study offers new biodegradable formulation for application on fruit and vegetables.
A rice starch edible coating blended with sucrose esters was developed for controlling the postharvest physiological activity of Cavendish banana to extend postharvest quality during ripening at ± 2°C. Coating effectiveness was assessed against changes in fruit physiochemical parameters such as weight loss, titratable acidity, total soluble solids, flesh fruit firmness, ion leakage, colour change, respiration, ethylene production, chlorophyll degradation and starch conversion were determined. The topography of coating material on the fruit surface was evaluated by scanning electron microscope (SEM). Surface morphology studies highlighted the binding compatibility of the coating matrix with the fruit peel character and formed a continuous uniform layer over the fruit surface. The results showed that the coating was effective in delaying ethylene biosynthesis and reducing respiration rate. Other factors impacting included delayed chlorophyll degradation, reduced weight loss and retention of fruit firmness for the first six days, all of which improved the commercial value of the fruit. The shelf life of coated fruit was prolonged for 12 days in comparison with the untreated control which ripened within seven days and lost marketability after Day 6. The pilot study demonstrates the effectiveness of a starch-based edible coating formulation for improving the ambient storage capacity of banana fruit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.