The objective of this study was to identify Fusarium species in the Gibberella fujikuroi species complex from rice, sugarcane and maize as most of the Fusarium species in the species complex are found on the three crops. Isolates used were collected from the field and obtained from culture collection. The Fusarium isolates were initially sorted based on morphology and identifications confirmed based on the DNA sequence of the translation elongation factor 1-α (TEF-1α) gene. Based on the closest match of BLAST analysis, five species were recovered, namely, F. sacchari, F. fujikuroi, F. proliferatum, F. andiyazi and F. verticillioides. This is the first report regarding F. andiyazi from rice in Malaysia and Southeast Asia. The phylogenetic tree generated by using the neighbor joining method showed that isolates from the same species were grouped in the same clade. The present study indicated that Fusarium species in the G. fujikuroi species complex are widespread in rice, sugarcane and maize in Peninsular Malaysia. The findings also suggest that the use of morphological characters for identification of Fusarium species in the G. fujikuroi species complex from the three crops will lead to incorrect species designation.
Malaysian population widely consumes the cereal-based foods, oilseeds, nuts, and spices in their daily diet. Mycotoxigenic fungi are well known to invade food products under storage conditions and produce mycotoxins that have threat to human and animal health. Therefore, determining toxigenic fungi and aflatoxin B(1) (AFB1) in foods used for human consumption is of prime importance to develop suitable management strategies and to minimize risk. Ninety-five food products marketed in Penang, Malaysia were randomly collected from different supermarkets and were analyzed for presence of Aspergillus spp. by agar plate assay and AFB1 by enzyme-linked immunosorbent assay (ELISA). A. flavus was the dominant fungi in all foods followed by A. niger. Fifty-five A. flavus strains were tested for their ability to produce aflatoxins on rice grain substrate. Thirty-six (65.4%) strains out of 55 produced AFB1 ranging from 1700 to 4400 μg/kg and 17 strains (31%) produced AFB2 ranging from 620 to 1670 μg/kg. Natural occurrence of AFB1 could be detected in 72.6% food products ranging from 0.54 to 15.33 μg/kg with a mean of 1.95 μg/kg. Maximum AFB1 levels were detected in peanut products ranging from 1.47 to 15.33 μg/kg. AFB1 levels detected in all food products were below the Malaysian permissible limits (<35 μg/kg). Aspergillus spp. and AFB1 was not detected in any cookies tested. Although this survey was not comprehensive, it provides valuable information on aflatoxin levels in foods marketed in Malaysia.
Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.