The high incidence of aflatoxins (AFs) in chocolates suggests the necessity to create a practical and cost-effective processing strategy for eliminating mycotoxins. The present study aimed to assess the adsorption abilities of activated charcoal (A. charcoal), yeast (Saccharomyces cerevisiae), and the probiotic Lactobacillus rhamnosus as AFs adsorbents in three forms—sole, di- and tri-mix—in phosphate-buffered saline (PBS) through an in vitro approach, simulated to mimic the conditions present in the gastrointestinal tract (GIT) based on pH, time and AFs concentration. In addition, the novel fortification of chocolate with A. charcoal, probiotic, and yeast (tri-mix adsorbents) was evaluated for its effects on the sensory properties. Using HPLC, 60 samples of dark, milk, bitter, couverture, powder, and wafer chocolates were examined for the presence of AFs. Results showed that all the examined samples contained AFs, with maximum concentrations of 2.32, 1.81, and 1.66 µg/kg for powder, milk, and dark chocolates, respectively. The combined treatment demonstrated the highest adsorption efficiency (96.8%) among all tested compounds. Scanning electron microscope (SEM) analysis revealed the tested adsorbents to be effective AF-binding agents. Moreover, the novel combination of tri-mix fortified chocolate had a minor cytotoxicity impact on the adsorptive abilities, with the highest binding at pH 6.8 for 4 h, in addition to inducing an insignificant effect on the sensory attributes of dark chocolate. Tri-mix is thus recommended in the manufacturing of dark chocolate in order to enhance the safety of the newly developed product.
The incidence of the mycotoxin ochratoxin A (OTA) in cheeses constitutes a significant economic and health concern for producers and consumers alike. Recently, detoxification approaches using food additives to counteract mycotoxins have been widely recommended in the food industry. This study aimed to quantify OTA levels in some Egyptian cheese types, and experimentally determine the detoxification effect of bentonite both in vitro and in vivo. The examined Roomy and Karish cheese showed higher OTA levels (4.138 and 3.399 μg/kg, respectively) than other cheeses. Calcium bentonite presented higher adsorption efficiency than sodium bentonite at all concentrations, both in phosphate buffered saline (PBS) and feta cheese, and at the whole pH range. Calcium bentonite concentrations (60 and 100 mg/ml) had much higher sequestering activity on OTA both in PBS and feta cheese, while the adsorption efficiency was higher at pH 6.8 than at pH 3. All enzymatic activities were near the control levels in rats treated both with OTA and bentonite compared with rats treated with OTA alone. The IC50 of calcium bentonite was 107.75 μg/ml, which was less cytotoxic than sodium bentonite (52.96 μg/ml). Bentonites were categorised by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) as excellent binders of OTA. The innovative calcium bentonite-fortified feta cheese showed the most superior sensorial properties; hence it can be predicted as a novel food-grade adsorbent for OTA sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.