Epigallocatechin gallate (EGCG) has been studied for its beneficial effects. However, some case reports have associated EGCG supplementation with hepato-toxicity. In the present study, we investigated the possible nephro-toxic effects of EGCG in diabetic mice. Streptozotocin (150 mg/kg, i.p.) was injected in mice for diabetes induction. EGCG (100 mg/kg/day, i.p.) was then given for 4 days. The administration of EGCG to diabetic mice caused 60% mortality with no death recorded in other groups. Blood samples were collected for estimation of serum cystatin C, neutrophil gelatinase-associated lipocalin and blood urea nitrogen. Animals were then sacrificed and kidneys were rapidly excised for estimation of oxidative stress markers (NADPH oxidase, reduced glutathione, total antioxidant capacity, nuclear factor erythroid 2-related factor 2, heat shock protein 90, hemeoxygenase-1), as well as inflammatory markers (nuclear factor kappa-B and tumor necrosis factor-α). Administration of EGCG to diabetic mice showed significant elevation in serum cystatin C and neutrophil gelatinase-associated lipocalin, marked increase in oxidative stress and inflammatory states in addition to marked over expression of active caspase-3. Histopathological examination confirmed EGCG induced renal damage in diabetic mice. In conclusion, despite of its well known favorable effects, EGCG could paradoxically exhibit nephro-toxic effect in the presence of diabetes.
Ellagic acid (EA) renoprotective effect against cisplatin (CIS)-induced nephrotoxicity remains elusive. Therefore, male Sprague-Dawley rats received CIS alone or EA (10 and 30 mg/kg, p.o.) for 5 days before and after CIS injection. CIS increased serum levels of blood urea nitrogen, creatinine, γ-glutamyl transferase, and reduced those of albumin and total protein. It also raised serum endothelin-1, as well as serum and renal nitric oxide, tumor necrosis factor-α, and monocyte chemoattractant protein-1. CIS enhanced the renal caspase-3, hemeoxygenase (HO)-1, nuclear factor-κB, and inducible nitric oxide. EA hampered CIS-induced nephrotoxicity manifested by an enhancement of the glomerular filtration rate which was associated by the reduction of inflammatory mediators and the apoptotic marker in the serum and/or kidney. The present study discloses that EA suppresses HO-1 and, its renoprotection is also linked to its anti-inflammatory and antiapoptotic properties, as well as the reduction of nitric oxide and endothelin-1.
Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.