Fire incidents occurring onboard ships cause significant consequences that result in substantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection of fires is essential for quick responses and powerful mitigation. The study in this research paper presents a fire detection technique based on YOLOv7 (You Only Look Once version 7), incorporating improved deep learning algorithms. The YOLOv7 architecture, with an improved E-ELAN (extended efficient layer aggregation network) as its backbone, serves as the basis of our fire detection system. Its enhanced feature fusion technique makes it superior to all its predecessors. To train the model, we collected 4622 images of various ship scenarios and performed data augmentation techniques such as rotation, horizontal and vertical flips, and scaling. Our model, through rigorous evaluation, showcases enhanced capabilities of fire recognition to improve maritime safety. The proposed strategy successfully achieves an accuracy of 93% in detecting fires to minimize catastrophic incidents. Objects having visual similarities to fire may lead to false prediction and detection by the model, but this can be controlled by expanding the dataset. However, our model can be utilized as a real-time fire detector in challenging environments and for small-object detection. Advancements in deep learning models hold the potential to enhance safety measures, and our proposed model in this paper exhibits this potential. Experimental results proved that the proposed method can be used successfully for the protection of ships and in monitoring fires in ship port areas. Finally, we compared the performance of our method with those of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.
In recent years, considerable work has been conducted on the development of synthetic medical images, but there are no satisfactory methods for evaluating their medical suitability. Existing methods mainly evaluate the quality of noise in the images, and the similarity of the images to the real images used to generate them. For this purpose, they use feature maps of images extracted in different ways or distribution of images set. Then, the proximity of synthetic images to the real set is evaluated using different distance metrics. However, it is not possible to determine whether only one synthetic image was generated repeatedly, or whether the synthetic set exactly repeats the training set. In addition, most evolution metrics take a lot of time to calculate. Taking these issues into account, we have proposed a method that can quantitatively and qualitatively evaluate synthetic images. This method is a combination of two methods, namely, FMD and CNN-based evaluation methods. The estimation methods were compared with the FID method, and it was found that the FMD method has a great advantage in terms of speed, while the CNN method has the ability to estimate more accurately. To evaluate the reliability of the methods, a dataset of different real images was checked.
Methods for detecting emotions that employ many modalities at the same time have been found to be more accurate and resilient than those that rely on a single sense. This is due to the fact that sentiments may be conveyed in a wide range of modalities, each of which offers a different and complementary window into the thoughts and emotions of the speaker. In this way, a more complete picture of a person’s emotional state may emerge through the fusion and analysis of data from several modalities. The research suggests a new attention-based approach to multimodal emotion recognition. This technique integrates facial and speech features that have been extracted by independent encoders in order to pick the aspects that are the most informative. It increases the system’s accuracy by processing speech and facial features of various sizes and focuses on the most useful bits of input. A more comprehensive representation of facial expressions is extracted by the use of both low- and high-level facial features. These modalities are combined using a fusion network to create a multimodal feature vector which is then fed to a classification layer for emotion recognition. The developed system is evaluated on two datasets, IEMOCAP and CMU-MOSEI, and shows superior performance compared to existing models, achieving a weighted accuracy WA of 74.6% and an F1 score of 66.1% on the IEMOCAP dataset and a WA of 80.7% and F1 score of 73.7% on the CMU-MOSEI dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.