The purpose of the present study was to investigate the effects of drinking water alkaline mineral complex (AMC) supplementation on growth performance, intestinal morphology, inflammatory response, immunity, antioxidant defense system, and barrier functions in weaned piglets. In a 15-day trial, 240 weaned piglets (9.35 ± 0.86 kg) at 28 days of age (large white × landrace × Duroc) were randomly divided into two groups: the control (Con) group and the AMC group. Drinking water AMC supplementation improved (P<0.01) final body weight (BW) and average daily gain (ADG) in weaned piglets compared to the Con group. Importantly, AMC reduced (P<0.01) the feed-to-gain (F:G) ratio. AMC water improved the physical health conditions of piglets under weaning stress, as reflected by the decreased (P<0.05) hair score and conjunctival score. Moreover, there was no significant (P>0.05) difference in relatively small intestinal length, organ (liver, spleen and kidney) indices, or gastrointestinal pH value in weaned piglets between the two groups. Of note, AMC significantly promoted the microvilli numbers in the small intestine and effectively ameliorated the gut morphology damage induced by weaning stress, as evidenced by the increased (P<0.05) villous height (VH) and ratio of VH to crypt depth. Additionally, AMC lessened the levels of lipopolysaccharide (LPS, P<0.01) and the contents of IL1β (P<0.05), and TNF-α (P<0.05) in the weaned piglet small intestine. Conversely, the gut immune barrier marker, secretory immunoglobulin A (sIgA) levels in serum and small intestine mucosa were elevated after AMC water treatment (P<0.01). Furthermore, AMC elevated the antioxidant mRNA levels of (P<0.05) SOD 1-2, (P<0.01) CAT, and (P<0.01) GPX 1-2 in the small intestine. Likewise, the mRNA levels of the small intestine tight junction factors Occludin (P<0.01), ZO-1 (P<0.05), Claudin 2 (P<0.01) and Claudin 5 (P<0.01) in the AMC treatment group were notably higher than those in the Con group. In conclusion, drinking water AMC supplementation has an accelerative effect on growth performance by elevating gut health by improving intestinal morphology, the inflammatory response, the antioxidant defense system, and barrier function in weaned piglets.
In the modern poultry industry, newly hatched chicks are unavoidably transported from the hatching to the rearing foster. Stress caused by multiple physical and psychological stressors during transportation is particularly harmful to the liver. Astragalus polysaccharide (APS) possesses multiple benefits against hepatic metabolic disorders. Given that transport stress could disturb hepatic glucolipid metabolism and the role of APS in metabolic regulation, we speculated that APS could antagonize transport stress-induced disorder of hepatic glucolipid metabolism. Firstly, newly hatched chicks were transported for 0, 2, 4, 8 h, respectively. Subsequently, to further investigated the effects of APS on transport stress-induced hepatic glucolipid metabolism disturbance, chicks were pretreated with water or APS and then subjected to transport treatment. Our study suggested that APS could relieve transport stress induced lipid deposition in liver. Meanwhile, transport stress also induced disturbances in glucose metabolism, reflected by augmented mRNA expression of key molecules in gluconeogenesis and glycogenolysis. Surprisingly, APS could simultaneously alleviate these alterations via PGC1α/SIRT1/AMPK pathway. Moreover, APS treatment regulated the level of PPARα and PPARγ, thereby alleviating transport stress-induced alterations of VLDL synthesis, cholesterol metabolism, lipid oxidation, synthesis and transport-related molecules. These findings indicated that APS could prevent the potential against transport stress-induced hepatic glucolipid metabolism disorders via PGC1α/ SIRT1/ AMPK/ PPARα/ PPARγ signaling system.
Background Stress, herd transfer, and food changes experienced by nursery and fattening pigs can lead to reduced performance, reduced digestion and absorption, and impaired intestinal health. Given the role of essential oils in relieving stress and improving animal welfare, we hypothesized that essential oils may improve pig performance via promoting gut health and gut homeostasis laid by EOs supplementation during nursery continuously impacts performance in fattening pigs. Results A total of 100 piglets (Landrace × Large White; weighted 8.08 ± 0.34 kg, weaned at d 28) were randomly selected and divided into 2 treatments: (1) basal diet (Con); (2) basal diet supplement with 0.1% complex essential oils (CEO). The experiment period was 42 days. Then weaned piglets’ growth performance and indications of intestinal health were assessed. Compared to the Con group, dietary supplemented CEO enhanced BW at 14 d (P < 0.05), and increased ADG during 1 ~ 14 d and 1 ~ 42 d (P < 0.05). Furthermore, CEO group had lower FCR during 1 ~ 42 d (P < 0.05). The CEO group also showed higher VH and VH:CD in duodenum and ileum (P < 0.05). Additionally, dietary CEO supplementation improved gut barrier function, as manifested by increased the mRNA expression of tight-junction protein and decreased serum DAO, ET and D-LA levels (P < 0.05). Finally, CEO supplementation alleviated gut inflammation, increased the activity of digestive enzymes. Importantly, piglets supplemented with CEOs during nursery also had better performance during fattening, suggesting that the establishment of intestinal health will also continuously affect subsequent digestion and absorption capacity. In short, dietary supplemented CEO improved performance and gut health via modulating increased intestine absorptive area, barrier integrity, digestive enzyme activity, and attenuating intestine inflammation. Meanwhile, essential oil supplementation during the nursery period also had a favorable effect on the performance of growing pigs. Conclusions Therefore, the strategy of adding CEO to pig diets as a growth promoter and enhancing intestinal health is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.