This paper reports a diode-end-pumped continuous-wave (CW) Nd:YAG laser operating at 946-nm by utilizing the 4F3/2-4I9/2 transition. We demonstrated that at an incident pump power of 27.7 W, an output power of 8.3-W could be achieved with a slope efficiency of 33.5%. To the best of our knowledge, this is the highest CW output power at 946 nm generated by LD end-pumped Nd:YAG lasers. By using intracavity frequency doubling with an LBO crystal, we further obtained a 473-nm blue laser with an output power of 1.2 W, achieving an optical-to-optical conversion efficiency of 7.1% at a pump power of 16.9 W. The short-term power instability of the blue laser was less than 1 %.
We report a miniature, visible to near infrared G-Fresnel spectrometer that contains a complete spectrograph system, including the detection hardware and connects with a smartphone through a microUSB port for operational control. The smartphone spectrometer is able to achieve a resolution of ~5 nm in a wavelength range from 400 nm to 1000 nm. We further developed a diffuse reflectance spectroscopy system using the smartphone spectrometer and demonstrated the capability of hemoglobin measurement. Proof of concept studies of tissue phantoms yielded a mean error of 9.2% on hemoglobin concentration measurement, comparable to that obtained with a commercial benchtop spectrometer. The smartphone G-Fresnel spectrometer and the diffuse reflectance spectroscopy system can potentially enable new point-of-care opportunities, such as cancer screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.