Bolts are important components on transmission lines, and the timely detection and exclusion of their abnormal conditions are imperative to ensure the stable operation of transmission lines. To accurately identify bolt defects, we propose a bolt defect identification method incorporating an attention mechanism and wide residual networks. Firstly, the spatial dimension of the feature map is compressed by the spatial compression network to obtain the global features of the channel dimension and enhance the attention of the network to the vital information in a weighted way. After that, the enhanced feature map is decomposed into two one-dimensional feature vectors by embedding a cooperative attention mechanism to establish long-term dependencies in one spatial direction and preserve precise location information in the other direction. During this process, the prior knowledge of the bolts is utilized to help the network extract critical feature information more accurately, thus improving the accuracy of recognition. The test results show that the bolt recognition accuracy of this method is improved to 94.57% compared with that before embedding the attention mechanism, which verifies the validity of the proposed method.
Purpose
The purpose of this paper is to understand the process of failure of scale and the corrosion resistance of scale to the substrate in an atmospheric environment.
Design/methodology/approach
The corrosion behaviour of X65 pipeline steel with different types of oxide scale was analysed using the natural environment exposure corrosion test, scanning electron microscopy analysis, electrochemical corrosion polarization curve test and other methods in a warehouse environment.
Findings
The results of this research show that one type of oxide scale, which is rough, has an uneven microstructure, and exhibits weak adhesion to the matrix, does not protect the substrate from corrosion. Conversely, the uniform, dense oxide scale, which exhibits strong adhesion to the matrix, provides effective protection to the steel. However, as the corrosion develops, the corrosion rate of the substrate tends to accelerate, especially when the structure of the oxide scale is damaged to a certain extent.
Originality/value
The corrosion mechanism of the oxide scale on hot rolled steel in an atmospheric environment has been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.