As a continuation of the study of cover-incomparability graphs of posets (C-I graphs), the notion of 2-colored diagrams is introduced and used in characterizations of posets whose C-I graphs belong to certain natural classes of graphs. As a particular instance, posets whose C-I graphs are chordal are characterized using a single 2-colored diagram. Some other instances are characterized in a similar way.
The cover-incomparability graph of a poset P is the edge-union of the covering and the incomparability graph of P. As a continuation of the study 3-colored diagrams we characterize some forbidden ⊲ -preserving subposets of the posets whose cover-in comparability graphs are not line graphs is proved.
The notion of forbidden ⊲-preserving 2-colored and 3-colored diagrams is introduced here as part of the study of cover-incomparability graphs of posets. Posets whose C-I graphs are chordal, which are characterized here using 2-colored and 3-colored diagrams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.