Automotive traffic monitoring using probe vehicles with Global Positioning System receivers promises significant improvements in cost, coverage, and accuracy. Current approaches, however, raise privacy concerns because they require participants to reveal their positions to an external traffic monitoring server. To address this challenge, we propose a system based on virtual trip lines and an associated cloaking technique. Virtual trip lines are geographic markers that indicate where vehicles should provide location updates. These markers can be placed to avoid particularly privacy sensitive locations. They also allow aggregating and cloaking several location updates based on trip line identifiers, without knowing the actual geographic locations of these trip lines. Thus they facilitate the design of a distributed architecture, where no single entity has a complete knowledge of probe identities and fine-grained location information. We have implemented the system with GPS smartphone clients and conducted a controlled experiment with 20 phone-equipped drivers circling a highway segment. Results show that even with this low number of probe vehicles, travel time estimates can be provided with less than 15% error, and applying the cloaking techniques reduces travel time estimation accuracy by less than 5% compared to a standard periodic sampling approach.
As Global Positioning System (GPS) receivers become a common feature in cell phones, personal digital assistants, and automobiles, there is a growing interest in tracking larger user populations, rather than individual users. Unfortunately, anonymous location samples do not fully solve the privacy problem. An adversary could link multiple samples (i.e., follow the footsteps) to accumulate path information and eventually identify a user. This paper reports on our ongoing work to analyze privacy risks in such applications. We observe that linking anonymous location samples is related to the data association problem in tracking systems. We then propose to use such tracking algorithms to characterize the level of privacy and to derive disclosure control algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.