Local area community cumulative incidence (per 1,000 population) Health care personnel with positive test results for SARS-CoV-2 antibodies (%) Abbreviation: COVID-19 = coronavirus disease 2019. * Calculated as the total number of reported community COVID-19 cases within a hospital-area county or counties between the beginning of the pandemic and 7 days after the first day of health care personnel enrollment at the hospital divided by population of the county or counties x 1,000.
Background SARS-CoV-2, the virus that causes COVID-19 disease, was first identified in Wuhan, China in December 2019, with subsequent worldwide spread. The first U.S. cases were identified in January 2020. Methods To determine if SARS-CoV-2 reactive antibodies were present in sera prior to the first identified case in the U.S. on January 19, 2020, residual archived samples from 7,389 routine blood donations collected by the American Red Cross from December 13, 2019 to January 17, 2020, from donors resident in nine states (California, Connecticut, Iowa, Massachusetts, Michigan, Oregon, Rhode Island, Washington, and Wisconsin) were tested at CDC for anti-SARS-CoV-2 antibodies. Specimens reactive by pan-immunoglobulin (pan Ig) enzyme linked immunosorbent assay (ELISA) against the full spike protein were tested by IgG and IgM ELISAs, microneutralization test, Ortho total Ig S1 ELISA, and receptor binding domain / Ace2 blocking activity assay. Results Of the 7,389 samples, 106 were reactive by pan Ig. Of these 106 specimens, 90 were available for further testing. Eighty four of 90 had neutralizing activity, 1 had S1 binding activity, and 1 had receptor binding domain / Ace2 blocking activity >50%, suggesting the presence of anti-SARS-CoV-2-reactive antibodies. Donations with reactivity occurred in all nine states. Conclusions These findings suggest that SARS-CoV-2 may have been introduced into the United States prior to January 19, 2020.
Little is known about the disease ecology of American alligators (Alligator mississippiensis), and especially how they respond immunologically to emerging infectious diseases and zoonotic pathogens. In this study, we examined serum samples collected from wild alligators in Florida (2010–2011) and South Carolina (2011–2012, 2014–2017) for antibody responses to multiple bacteria. Immunoglobulin Y (IgY) was purified from serum to generate a mouse monoclonal antibody (mAb AMY-9) specific to the IgY heavy chain. An indirect ELISA was then developed for quantifying antibody responses against whole cell Escherichia coli, Vibrio parahaemolyticus, Vibrio vulnificus, Mycobacterium fortuitum, Erysipelothrix rhusiopthiae, and Streptococcus agalactiae. In Florida samples the primary differences in antibody levels were between January–March and late spring through summer and early fall (May–October), most likely reflecting seasonal influences in immune responses. Of note, differences over the months in antibody responses were confined to M. fortuitum, E. rhusiopthiae, V. vulnificus, and E. coli. Robust antibody responses in SC samples were observed in 2011, 2014, and 2015 against each bacterium except E. coli. All antibody responses were low in 2016 and 2017. Some of the highest antibody responses were against V. parahaemolyticus, M. fortuitum, and E. rhusiopthiae. One SC alligator estimated to be 70+ years old exhibited the highest measured antibody response against V. parahaemolyticus and M. fortuitum. By combining data from both sites, we show a clear correlation between body-mass-indices (BMI) and antibody titers in all six of the bacteria examined. Our study provides a critical antibody reagent and a proof-of-concept approach for studying the disease ecology of alligators in both the wild and in captivity.
Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (RT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of RT-PCR confirmed COVID-19 patients’ sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4%-96.6%. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698-0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.