BACKGROUND Community-acquired pneumonia is a leading infectious cause of hospitalization and death among U.S. adults. Incidence estimates of pneumonia confirmed radio-graphically and with the use of current laboratory diagnostic tests are needed. METHODS We conducted active population-based surveillance for community-acquired pneumonia requiring hospitalization among adults 18 years of age or older in five hospitals in Chicago and Nashville. Patients with recent hospitalization or severe immunosuppression were excluded. Blood, urine, and respiratory specimens were systematically collected for culture, serologic testing, antigen detection, and molecular diagnostic testing. Study radiologists independently reviewed chest radiographs. We calculated population-based incidence rates of community-acquired pneumonia requiring hospitalization according to age and pathogen. RESULTS From January 2010 through June 2012, we enrolled 2488 of 3634 eligible adults (68%). Among 2320 adults with radiographic evidence of pneumonia (93%), the median age of the patients was 57 years (interquartile range, 46 to 71); 498 patients (21%) required intensive care, and 52 (2%) died. Among 2259 patients who had radio-graphic evidence of pneumonia and specimens available for both bacterial and viral testing, a pathogen was detected in 853 (38%): one or more viruses in 530 (23%), bacteria in 247 (11%), bacterial and viral pathogens in 59 (3%), and a fungal or mycobacterial pathogen in 17 (1%). The most common pathogens were human rhinovirus (in 9% of patients), influenza virus (in 6%), and Streptococcus pneumoniae (in 5%). The annual incidence of pneumonia was 24.8 cases (95% confidence interval, 23.5 to 26.1) per 10,000 adults, with the highest rates among adults 65 to 79 years of age (63.0 cases per 10,000 adults) and those 80 years of age or older (164.3 cases per 10,000 adults). For each pathogen, the incidence increased with age. CONCLUSIONS The incidence of community-acquired pneumonia requiring hospitalization was highest among the oldest adults. Despite current diagnostic tests, no pathogen was detected in the majority of patients. Respiratory viruses were detected more frequently than bacteria. (Funded by the Influenza Division of the National Center for Immunizations and Respiratory Diseases.)
Background U.S. incidence estimates of pediatric community-acquired pneumonia hospitalizations based on prospective data collection are limited. Updated estimates with radiographic confirmation and current laboratory diagnostics are needed. Methods We conducted active population-based surveillance for community-acquired pneumonia requiring hospitalization among children <18 years in three hospitals in Memphis, Nashville, and Salt Lake City. We excluded children with recent hospitalization and severe immunosuppression. Blood and respiratory specimens were systematically collected for pathogen detection by multiple modalities. Chest radiographs were independently reviewed by study radiologists. We calculated population-based incidence rates of community-acquired pneumonia hospitalizations, overall and by age and pathogen. Results From January 2010-June 2012, we enrolled 2638 (69%) of 3803 eligible children; 2358 (89%) had radiographic pneumonia. Median age was 2 years (interquartile range 1-6); 497 (21%) children required intensive care, and three (<1%) died. Among 2222 children with radiographic pneumonia and specimens available for both bacterial and viral testing, a viral and/or bacterial pathogen was detected in 1802 (81%); ≥1 virus in 1472 (66%), bacteria in 175 (8%), and bacterial-viral co-detection in 155 (7%). Annual pneumonia incidence was 15.7/10,000 children [95% confidence interval (CI) 14.9-16.5], with highest rates among children <2 years [62.2/10,000 (CI 57.6-67.1)]. Respiratory syncytial virus (37% vs. 8%), adenovirus (15% vs. 3%), and human metapneumovirus (15% vs. 8%) were more commonly detected in children <5 years compared with older children; Mycoplasma pneumoniae (19% vs. 3%) was more common in children ≥5 years. Conclusions Pediatric community-acquired pneumonia hospitalization burden was highest among the very young, with respiratory viruses most commonly detected.
BACKGROUND Both balanced crystalloids and saline are used for intravenous fluid administration in critically ill adults, but it is not known which results in better clinical outcomes. METHODS In a pragmatic, cluster-randomized, multiple-crossover trial conducted in five intensive care units at an academic center, we assigned 15,802 adults to receive saline (0.9% sodium chloride) or balanced crystalloids (lactated Ringer’s solution or Plasma-Lyte A) according to the randomization of the unit to which they were admitted. The primary outcome was a major adverse kidney event within 30 days — a composite of death from any cause, new renal-replacement therapy, or persistent renal dysfunction (defined as an elevation of the creatinine level to ≥200% of baseline) — all censored at hospital discharge or 30 days, whichever occurred first. RESULTS Among the 7942 patients in the balanced-crystalloids group, 1139 (14.3%) had a major adverse kidney event, as compared with 1211 of 7860 patients (15.4%) in the saline group (marginal odds ratio, 0.91; 95% confidence interval [CI], 0.84 to 0.99; conditional odds ratio, 0.90; 95% CI, 0.82 to 0.99; P = 0.04). In-hospital mortality at 30 days was 10.3% in the balanced-crystalloids group and 11.1% in the saline group (P = 0.06). The incidence of new renal-replacement therapy was 2.5% and 2.9%, respectively (P = 0.08), and the incidence of persistent renal dysfunction was 6.4% and 6.6%, respectively (P = 0.60). CONCLUSIONS Among critically ill adults, the use of balanced crystalloids for intravenous fluid administration resulted in a lower rate of the composite outcome of death from any cause, new renal-replacement therapy, or persistent renal dysfunction than the use of saline. (Funded by the Vanderbilt Institute for Clinical and Translational Research and others; SMART-MED and SMART-SURG ClinicalTrials.gov numbers, NCT02444988 and NCT02547779.)
Key PointsQuestionDoes prior COVID-19 vaccination reduce hospitalizations for COVID-19, and among patients hospitalized for COVID-19, does prior vaccination reduce disease severity?FindingsIn a case-control study that included 4513 hospitalized adults in 18 US states, hospitalization for a COVID-19 diagnosis compared with an alternative diagnosis was associated with an adjusted odds ratio (aOR) of 0.15 for full vaccination with an authorized or approved mRNA COVID-19 vaccine. Among adults hospitalized for COVID-19, progression to death or invasive mechanical ventilation was associated with an aOR of 0.33 for full vaccination; both ORs were statistically significant.MeaningVaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and with disease progression, consistent with risk reduction among vaccine breakthrough infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.