Key PointsQuestionDoes prior COVID-19 vaccination reduce hospitalizations for COVID-19, and among patients hospitalized for COVID-19, does prior vaccination reduce disease severity?FindingsIn a case-control study that included 4513 hospitalized adults in 18 US states, hospitalization for a COVID-19 diagnosis compared with an alternative diagnosis was associated with an adjusted odds ratio (aOR) of 0.15 for full vaccination with an authorized or approved mRNA COVID-19 vaccine. Among adults hospitalized for COVID-19, progression to death or invasive mechanical ventilation was associated with an aOR of 0.33 for full vaccination; both ORs were statistically significant.MeaningVaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and with disease progression, consistent with risk reduction among vaccine breakthrough infections.
Objectives To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. Design Case-control study. Setting 21 hospitals across the United States. Participants 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). Main outcome measures Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization’s clinical progression scale was compared among variants using proportional odds regression. Results Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). Conclusions mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.
ObjectivesTo characterize the clinical severity of COVID-19 caused by Omicron, Delta, and Alpha SARS-CoV-2 variants among hospitalized adults and to compare the effectiveness of mRNA COVID-19 vaccines to prevent hospitalizations caused by each variant.DesignA case-control study of 11,690 hospitalized adults.SettingTwenty-one hospitals across the United States.ParticipantsThis study included 5728 cases hospitalized with COVID-19 and 5962 controls hospitalized without COVID-19. Cases were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: Alpha (March 11 to July 3, 2021), Delta (July 4 to December 25, 2021), and Omicron (December 26, 2021 to January 14, 2022).Main Outcome MeasuresVaccine effectiveness was calculated using a test-negative design for COVID-19 mRNA vaccines to prevent COVID-19 hospitalizations by each variant (Alpha, Delta, Omicron). Among hospitalized patients with COVID-19, disease severity on the WHO Clinical Progression Ordinal Scale was compared among variants using proportional odds regression.ResultsVaccine effectiveness of the mRNA vaccines to prevent COVID-19-associated hospitalizations included: 85% (95% CI: 82 to 88%) for 2 vaccine doses against Alpha; 85% (95% CI: 83 to 87%) for 2 doses against Delta; 94% (95% CI: 92 to 95%) for 3 doses against Delta; 65% (95% CI: 51 to 75%) for 2 doses against Omicron; and 86% (95% CI: 77 to 91%) for 3 doses against Omicron. Among hospitalized unvaccinated COVID-19 patients, severity on the WHO Clinical Progression Scale was higher for Delta than Alpha (adjusted proportional odds ratio [aPOR] 1.28, 95% CI: 1.11 to 1.46), and lower for Omicron than Delta (aPOR 0.61, 95% CI: 0.49 to 0.77). Compared to unvaccinated cases, severity was lower for vaccinated cases for each variant, including Alpha (aPOR 0.33, 95% CI: 0.23 to 0.49), Delta (aPOR 0.44, 95% CI: 0.37 to 0.51), and Omicron (aPOR 0.61, 95% CI: 0.44 to 0.85).ConclusionsmRNA vaccines were highly effective in preventing COVID-19-associated hospitalizations from Alpha, Delta, and Omicron variants, but three vaccine doses were required to achieve protection against Omicron similar to the protection that two doses provided against Delta and Alpha. Among adults hospitalized with COVID-19, Omicron caused less severe disease than Delta, but still resulted in substantial morbidity and mortality. Vaccinated patients hospitalized with COVID-19 had significantly lower disease severity than unvaccinated patients for all the variants.
Current therapy for condylomata acuminata (genital warts) is not consistently effective. Therefore, we conducted a randomized, double-blind trial to compare interferon alpha-2b with placebo in the treatment of this disorder. Our rationale was that interferon has both antiproliferative and antiviral properties. The placebo or interferon (1 X 10(6) IU) was injected directly into one to three warts three times weekly for three weeks. The injections were well tolerated by both groups of patients. The side effects of fever, chills, myalgia, headache, fatigue, and leukopenia occurred more commonly in the interferon group than in the placebo group, but such effects rarely disrupted daily routines. Only 13 of 296 patients (4 percent) discontinued therapy because of side effects (11 in the interferon group and 2 in the placebo group). Twenty-six other patients were excluded from analysis because of a loss to follow-up or other deviations from protocol, thus leaving 257 patients in the final evaluation. At one week after the completion of therapy, interferon had produced a large and significantly greater reduction in mean wart area (a 62.4 percent decrease), as compared with placebo (a 1.2 percent increase in mean area) (P less than 0.001). At the conclusion of the study (13 weeks after the completion of therapy), the mean wart area was still decreased 39.9 percent below the initial size in the interferon group, whereas it had increased by 46 percent over base-line measurements in the placebo group (P less than 0.001). At the same time, all treated warts had completely cleared in 36 percent of the interferon recipients and in 17 percent of the placebo recipients (P less than 0.001), whereas treated warts progressed in 13 percent of the interferon recipients and in 50 percent of the placebo recipients (P less than 0.001). We conclude that injection of interferon alpha-2b directly into genital warts appears to be an effective and fairly well-tolerated form of therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.