Globally, there has been a recent surge in ‘citizens’ assemblies’1, which are a form of civic participation in which a panel of randomly selected constituents contributes to questions of policy. The random process for selecting this panel should satisfy two properties. First, it must produce a panel that is representative of the population. Second, in the spirit of democratic equality, individuals would ideally be selected to serve on this panel with equal probability2,3. However, in practice these desiderata are in tension owing to differential participation rates across subpopulations4,5. Here we apply ideas from fair division to develop selection algorithms that satisfy the two desiderata simultaneously to the greatest possible extent: our selection algorithms choose representative panels while selecting individuals with probabilities as close to equal as mathematically possible, for many metrics of ‘closeness to equality’. Our implementation of one such algorithm has already been used to select more than 40 citizens’ assemblies around the world. As we demonstrate using data from ten citizens’ assemblies, adopting our algorithm over a benchmark representing the previous state of the art leads to substantially fairer selection probabilities. By contributing a fairer, more principled and deployable algorithm, our work puts the practice of sortition on firmer foundations. Moreover, our work establishes citizens’ assemblies as a domain in which insights from the field of fair division can lead to high-impact applications.
Sortition is a political system in which decisions are made by panels of randomly selected citizens. The process for selecting a sortition panel is traditionally thought of as uniform sampling without replacement, which has strong fairness properties. In practice, however, sampling without replacement is not possible since only a fraction of agents is willing to participate in a panel when invited, and different demographic groups participate at different rates. In order to still produce panels whose composition resembles that of the population, we develop a sampling algorithm that restores close-to-equal representation probabilities for all agents while satisfying meaningful demographic quotas. As part of its input, our algorithm requires probabilities indicating how likely each volunteer in the pool was to participate. Since these participation probabilities are not directly observable, we show how to learn them, and demonstrate our approach using data on a real sortition panel combined with information on the general population in the form of publicly available survey data.
A canonical problem in voting theory is: which voting rule should we use to aggregate voters' preferences into a collective decision over alternatives? When applying the axiomatic approach to evaluate and compare voting rules, we are faced with prohibitive impossibilities. However, these impossibilities occur under the assumption that voters' preferences (collectively called a profile) will be worst-case with respect to the desired criterion.In this paper, we study the axiomatic approach slightly beyond the worst-case: we present and apply a "smoothed" model of the voting setting, which assumes that while inputs (profiles) may be worst-case, all inputs will be perturbed by a small amount of noise. In defining and analyzing our noise model, we do not aim to substantially technically innovate on Lirong Xia's recently-proposed smoothed model of social choice; rather, we offer an alternative model and approach to analyzing it that aims to strike a different balance of simplicity and technical generality, and to correspond closely to Spielman and Teng's original work on smoothed analysis [29].Within our model, we then give simple proofs of smoothed-satisfaction or smoothed-violation of several axioms and paradoxes, including most of those studied by Xia as well as some previously unstudied. Novel results include smoothed analysis of Arrow's theorem and analyses of the axioms Consistency and Independence of Irrelevant Alternatives. In independent work from Xia's recent paper [34], we also show the smoothed-satisfaction of coalition-based notions of Strategy-Proofness, Monotonocity, and Participation. A final, central component of our contributions are the high-level insights and future directions we identify based on this work, which we describe in detail to maximally facilitate additional research in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.