The SARS-CoV-2 virus like many other viruses has transformed in a continual manner to give rise to new variants by means of mutations commonly through substitutions and indels. These mutations in some cases can give the virus a survival advantage making the mutants dangerous. In general, laboratory investigation must be carried to determine whether the new variants have any characteristics that can make them more lethal and contagious. Therefore, complex and time-consuming analyses are required in order to delve deeper into the exact impact of a particular mutation. The time required for these analyses makes it difficult to understand the variants of concern and thereby limiting the preventive action that can be taken against them spreading rapidly. In this analysis, we have deployed a statistical technique Shannon Entropy, to identify positions in the spike protein of SARS Cov-2 viral sequence which are most susceptible to mutations. Subsequently, we also use machine learning based clustering techniques to cluster known dangerous mutations based on similarities in properties. This work utilizes embeddings generated using language modeling, the ProtBERT model, to identify mutations of a similar nature and to pick out regions of interest based on proneness to change. Our entropy-based analysis successfully predicted the fifteen hotspot regions, among which we were able to validate ten known variants of interest. As the situation of SARS-COV-2 virus rapidly evolves we believe that the remaining nine mutational hotspots may contain variants that can emerge in the future. We believe that this may be promising in helping the research community to devise therapeutics based on probable new mutation zones in the viral sequence and resemblance in properties of various mutations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.