During pulsating hydraulic fracturing (PHF), reservoir rock can be subjected to constant amplitude, constant mean stress (CACMS) cyclic loading or constant amplitude, increasing mean stress (CAIMS) cyclic loading. The influence of increasing mean stress on rock fatigue strength, fatigue lifetime, fatigue damage, and energy evolution of shale is rarely investigated, and which type of cyclic loading is more efficient for PHF has not been determined and demonstrated. In this Article, a series of uniaxial compression tests under these two types of cyclic loading are first conducted. A fatigue lifetime model for CAIMS is established. The shale strength and fatigue lifetime for CACMS and CAIMS are then compared. Their differences are explained by their dissipated energy density evolution and damage evolution. Finally, a nonlinear damage accumulation model to predict damage evolution for CAIMS cyclic loading is proposed. It is suggested that CAIMS is a better cyclic loading type when its amplitude is higher than 30% UCS (uniaxial compressive strength) of rock. This provides a meaningful amplitude threshold for CAIMS parameter optimization in the PHF construction. In this case, compared with CACMS cyclic loading, CAIMS cyclic loading significantly decreases the shale strength by up to 20% UCS and the fatigue lifetime from over 500 to 9. Different from an inverted-S-shaped damage evolution for CACMS cyclic loading, damage evolution for CAIMS cyclic loading exhibits a monotonic increasing trend. The damage variable growth rates of CACMS and CAIMS both show a three-stage trend: (1) their growth rates both decrease; (2) the growth rate for CACMS remains stable, while for CAIMS its growth rate slowly increases; and (3) their growth rates both increase sharply. Correspondingly, the dissipated energy density evolutions for CACMS and CAIMS show a similar three-stage trend. It can be concluded that during the second stage, for CAIMS microfractures and plastic deformation inside specimens are developed and accumulated more and faster than those for CACMS cyclic loading. This explains the phenomenon that the fatigue lifetime and strength of CAIMS cyclic loading are less than those of CACMS. The nonlinear damage accumulation model proposed in this Article can well fit experimental results. This model can be used for accurately describing reservoir rock mechanical property degradation during hydraulic fracture simulation induced by PHF.
The potential of hydrates formed from R141b (CH3CCl2F), trimethylolethane (TME), and tetra-n-butylammonium bromide/tetra-n-butylammonium chloride (TBAB/TBAC) to be used as working substances for cold storage was investigated to provide a solution for unbalanced energy grids. In this study, the characteristics of hydrate formation, crystal morphology of hydrates, and the stability of hydrate in cyclic formation under 0.1 MPa and at 5 °C were carried out. It found that the ice had a positive effect on the hydrate formation under same conditions. Upon the addition of the ice cube, the induction time of R141b, TME, and TBAB/TBAC hydrates decreased markedly, and significantly high formation rates were obtained. Under magnetic stirring, the rate at which TBAB/TBAC formed hydrates was significantly lower than that when ice was used. In microscopic experiments, it was observed that the TBAB/TBAC mixture formed hydrates with more nucleation sites and compact structures, which may increase the hydrate formation rate. In the multiple cycle formation of TBAB/TBAC hydrates, the induction time gradually decreased with the increasing number of formation cycles and finally stabilized, which indicated the potential of the TBAB/TBAC hydrates for application in cold storage owing to their good durability and short process time for heat absorption and release.
The South China Sea is one of the four major oil and gas accumulations in the world, 70% of which are located in deepwater areas. Deepwater is not only a frontier field challenging today's oil and gas exploration and development technology but also a strategic field in which China is gradually increasing investment. Effective completion is crucial for the safe production of deepwater resources through horizontal wells. Conversely, sand production has been proven to be the main geotechnical problem that restricts safe and efficient production from deepwater
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.