Pollution control has become increasingly important in recent years. Heavy metal ions, proteins, and dyes are frequently found in wastewater because of their extensive industrial applications. In this study, pH, temperature, and magnetic triple‐responsive poly(N‐isopropylacrylamide‐co‐methacrylic acid) porous microspheres doped with magnetite nanoparticles as a new type of smart adsorbents are used to remove the aforementioned pollutants. The pH‐ and temperature‐responsiveness of these microspheres realizes tunable adsorption toward Cu(II). Simultaneously, the microspheres exhibit good adsorption capability to lysozyme and basic fuchsine. Microsphere‐adsorbing pollutants are easlily separated from wastewater by applying an external magnetic field to reuse the microspheres.
A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO + SO) and free sulfurous acid (FSA, the unionized form: HSO) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10 to 2.0 × 10 mg HSO-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage.
Increasing strength while not sacrificing ductility of polymeric elastomers promises to expand application ranges and meanwhile improve durability of the materials. However, compromise on strength or ductility usually occurs because...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.