Macrophage invasion is an important event during arteriogenesis, but the underlying mechanism is still only partially understood. The present study tested the hypothesis that nitric oxide (NO) and VE-cadherin, two key mediators for vascular permeability, contribute to this event in a rat ischemic hindlimb model. In addition, the effect of NO on expression of VE-caherin and endothelial permeability was also studied in cultured HUVECs. We found that: 1) in normal arteriolar vessels (NAV), eNOS was moderately expressed in endothelial cells (EC) and iNOS was rarely detected. In contrast, in collateral vessels (CVs) induced by simple femoral artery ligation, both eNOS and iNOS were significantly upregulated (P<0.05). Induced iNOS was found mainly in smooth muscle cells, but also in other vascular cells and macrophages; 2) in NAV VE-cadherin was strongly expressed in EC. In CVs, VE-cadherin was significantly downregulated, with a discontinuous and punctate pattern. Administration of nitric oxide donor DETA NONOate (NONOate) further reduced the amounts of Ve-cadherin in CVs, whereas NO synthase inhibitor L-NAME inhibited downregulation of VE-cadherin in CVs; 3) in normal rats Evans blue extravasation (EBE) was low in the musculus gracilis, FITC-dextron leakage was not detected in the vascular wall and few macrophages were observed in perivascular space. In contrast, EBE was significantly increased in femoral artery ligation rats, FITC-dextron leakage and increased amounts of macrophages were detected in CVs, which were further enhanced by administration of NONOate, but inhibited by L-NAME supplement; 4) in vitro experiments confirmed that an increase in NO production reduced VE-cadherin expression, correlated with increases in the permeability of HUVECs. In conclusion, our data for the first time reveal the expression profile of VE-cadherin and alterations of vascular permeability in CVs, suggesting that NO-mediated VE-cadherin pathway may be one important mechanism responsible, at least in part, for macrophage invasion during arteriogenesis.
Although collateral vessel growth is distinctly enhanced by elevated fluid shear stress (FSS), the underlying regulatory mechanism of this process remains incompletely understood. Recent studies have shown that microRNAs (miRNAs) play a pivotal role in vascular development, homeostasis and a variety of diseases. Therefore, this study was designed to identify miRNAs involved in elevated FSS-induced collateral vessel growth in rat hind limbs. A side-to-side arteriovenous (AV) shunt was created between the distal stump of one of the bilaterally occluded femoral arteries and the accompanying vein. The miRNA array profile showed 94 differentially expressed miRNAs in FSS-stressed collaterals including miRNA-352 which was down-regulated. Infusion of antagomir-352 increased the number and proliferation of collateral vessels and promoted collateral flow restoration in a model of rat hind limb ligation. In cell culture studies, the miR-352 inhibitor increased endothelial proliferation, migration and tube formation. In addition, antagomir-352 up-regulated the expression of insulin-like growth factor II receptor (IGF2R), which may play a part in the complex pathway leading to arterial growth. We conclude that enhanced collateral vessel growth is controlled by miRNAs, among which miR-352 is a novel candidate that negatively regulates arteriogenesis, meriting additional studies to unravel the pathways leading to improved collateral circulation.
We previously reported excessive growth of collateral vessels in the dog heart during arteriogenesis induced by implantation of an ameroid constrictor around the circumflex branch of the left coronary artery. In the present study, using histology and immunocofocal microscopy, we further investigated how these aberrant collateral vessels form. By comparison with mature collateral vessels the following findings were made: perivascular space was very narrow where damage of the perivascular myocardium occurred; the neointima was very thick, resulting in a very small lumen; elastica van Gieson staining revealed the absence of the internal elastic lamina and of elastic fibers in the adventitia, but abundant collagen in the adventitia as well as in the neointima; smooth muscle cells of the neointima expressed less α-SM actin and little desmin; expression of the fibroblast growth factors aFGF, bFGF and platelet-derived growth factor (PDGF)-AB was observed mainly in the endothelial cells and abluminal region, but transforming growth factor-β1 was only present in the adventitia and damaged myocardium; angiogenesis in the neointima was observed in some collateral vessels expressing high levels of eNOS, and cell proliferation was mainly present in the abluminal region, but apoptosis was in the deep neointima. In conclusion, these data for the first time reveal that the formation of the aberrant collateral vessels in the dog heart involves active extracellular proteolysis and a special expression profile of growth factors, eNOS, cell proliferation and apoptosis. The finding of a narrow perivascular space and perivascular myocardial damage suggests that anatomical constraint is most likely the cause for exacerbated inward remodeling in aberrant collateral vessels in dog heart.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.