Ramp lesion of the medial meniscus used to be completely disregarded in the past. Ramp lesion has been now put under the spotlight by orthopaedic and sport medicine surgeons and requires attention. It is closely associated with anterior cruciate ligament injury. Major risk factors include chronic laxity, lateral meniscal lesion, anterior cruciate ligament reconstruction revision, anterolateral ligament tear concomitant with anterior cruciate ligament injury, time from injury, pre-operative side-to-side laxity > 6 mm, age < 30 years old, male sex, etc. Radiologists attempt to create diagnostic criteria for ramp lesion using magnetic resonance imaging. However, the only definite method to diagnose ramp lesion is still arthroscopy. Various techniques exist, among which posteromedial approach is the most highly recommended. Various treatment options are available. The success rate of ramp repair is very high. Major complications are uncommon. Cite this article: EFORT Open Rev 2021;6:372-379. DOI: 10.1302/2058-5241.6.200126
Osteoarthritis (OA) is the most prevalent degenerative joint disease in the elderly. Accumulation of evidence has suggested that chondrocyte senescence plays a significant role in OA development. Here, we show that Krüppel-like factor 10 (Klf10), also named TGFβ inducible early gene-1 (TIEG1), is involved in the pathology of chondrocyte senescence. Knocking down the Klf10 in chondrocytes attenuated the tert-butyl hydroperoxide (TBHP)-induced senescence, inhibited generation of reactive oxygen species (ROS), and maintained mitochondrial homeostasis by activating mitophagy. These findings suggested that knocking down Klf10 inhibited senescence-related changes in chondrocytes and improved cartilage homeostasis, indicating that Klf10 may be a therapeutic target for protecting cartilage against OA.
Background The transforming growth factor-beta (TGF-β) signaling pathway is an important pathway associated with the pathogenesis of osteoarthritis (OA). This study was to investigate the involvement of circRNAs in the TGF-β signaling pathway. Methods Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2′-deoxyuridine (EdU) assay were used to detect the proliferation of primary mouse chondrocytes (PMCs). RNA-sequencing together with bioinformatics analysis were used to systematically clarify TGF-β1 induced alternations of circRNAs in PMCs. The regulatory and functional role of circPhf21a was examined in PMCs. Downstream targets of circPhf21a were explored by RNA-sequencing after overexpression of circPhf21a and verified by RT-qPCR in PMCs. Finally, the role and mechanism of circPhf21a in OA were explored in mouse models. Results We found that TGF-β1 promoted the proliferation of PMCs. Meanwhile, RT-qPCR and western blotting indicated that TGF-β1 promoted extracellular matrix (ECM) anabolism. RNA-sequencing revealed that a total of 36 circRNAs were differentially expressed between PMCs treated with and without TGF-β1. Of these, circPhf21a was significantly decreased by TGF-β1. Furthermore, circPhf21a knockdown promoted the proliferation and ECM synthesis of PMCs, whereas overexpression of circPhf21a showed the opposite effects. Mechanically, the expression profiles of the mRNAs revealed that Vegfa may be the target of circPhf21a. Additionally, we found that circPhf21a was significantly upregulated in the mouse OA model, and inhibition of circPhf21a significantly relieved the progression of OA. Conclusions Our results found that TGF-β1 promoted the proliferation and ECM synthesis of PMCs via the circPhf21a-Vegfa axis, which may provide novel therapeutic targets for OA treatment.
Background The optimal treatment of Pauwels type III femoral neck fracture (FNF) in young patients remains a worldwide challenge in orthopedic surgery. Methods Finite element models of four internal fixations were developed to treat Pauwels type III FNF: a: the traditional inverted triangular parallel cannulated screw (PCS) model, b: the F-technique cannulated screw model, c: the modified F-technique cannulated screw model using a fully threaded screw instead of a partially threaded distally, d: the dynamic hip screw coupled with derotational screw (DHS + DS) model. Under the same conditions, finite element analyses were carried out to compare the displacement and von Mises stress distribution of four internal fixations and femurs, the maximum crack distances of the fracture surfaces, Z axis displacements of four models as well as the stress distribution in the subtrochanteric region. Results The modified F-technique configuration resulted in a more stable fixation as compared to the other three configurations, with respect to the maximum displacement and stress peaks of femur and internal fixations, the maximum crack distances of the fracture surfaces, Z axis displacements of four configurations as well as the stress distribution in the subtrochanteric region. Conclusions Our results suggested that modified F-technique configuration show a better performance in resisting shearing and rotational forces in treating Pauwels type III FNF compared to those using traditional inverted triangular PCS, the F-technique configuration or DHS + DS, providing a new choice for the treatment of FNFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.