The experiment was performed in support of a Japanese initiative to investigate the biological effects of irradiation from residual neutron-activated radioactivity that resulted from the A-bombing. Radionuclide 56Mn (T1/2 = 2.58 h) is one of the main neutron-activated emitters during the first hours after neutron activation of soil dust particles. In our previous studies (2016–2017) related to irradiation of male Wistar rats after dispersion of 56MnO2 powder, the internal doses in rats were found to be very inhomogeneous: distribution of doses among different organs ranged from 1.3 Gy in small intestine to less than 0.0015 Gy in some of the other organs. Internal doses in the lungs ranged from 0.03 to 0.1 Gy. The essential pathological changes were found in lung tissue of rats despite a low level of irradiation. In the present study, the dosimetry investigations were extended: internal doses in experimental mice and rats were estimated for various activity levels of dispersed neutron-activated 56MnO2 powder. The following findings were noted: (a) internal radiation doses in mice were several times higher in comparison with rats under similar conditions of exposure to 56MnO2 powder. (b) When 2.74 × 108 Bq of 56MnO2 powder was dispersed over mice, doses of internal irradiation ranged from 0.81 to 4.5 Gy in the gastrointestinal tract (small intestine, stomach, large intestine), from 0.096 to 0.14 Gy in lungs, and doses in skin and eyes ranged from 0.29 to 0.42 Gy and from 0.12 to 0.16 Gy, respectively. Internal radiation doses in other organs of mice were much lower. (c) Internal radiation doses were significantly lower in organs of rats with the same activity of exposure to 56MnO2 powder (2.74 × 108 Bq): 0.09, 0.17, 0.29, and 0.025 Gy in stomach, small intestine, large intestine, and lungs, respectively. (d) Doses of internal irradiation in organs of rats and mice were two to four times higher when they were exposed to 8.0 × 108 Bq of 56MnO2 (in comparison with exposure to 2.74 × 108 Bq of 56MnO2). (e) Internal radiation doses in organs of mice were 7–14 times lower with the lowest 56MnO2 amount (8.0 × 107 Bq) in comparison with the highest amount, 8.0 × 108 Bq, of dispersed 56MnO2 powder. The data obtained will be used for interpretation of biological effects in experimental mice and rats that result from dispersion of various levels of neutron-activated 56MnO2 powder, which is the subject of separate studies.
To understand the radiation effects of the atomic bombing of Hiroshima and Nagasaki among the survivors, radiation from neutron-induced radioisotopes in soil should be considered in addition to the initial radiation directly received from the bombs. 56Mn, which emits both β particles and γ-rays, is one of the dominant radioisotopes created in soil by neutrons from the bomb. Thus we investigated the biological effects of internal exposure to 56MnO2 particle in the lung of male Wistar rats comparing to the effects of external 60Co-γ irradiation. Absorbed doses of internal irradiation of lungs were between 25 and 65 mGy in 56MnO2-exposed animals, while the whole body doses were between 41 and 100 mGy. Animals were examined on days 3 and 61 after the exposure. There were no remarkable pathological changes related to 56MnO2 particle exposure. However, mRNA and protein expressions of aquaporin 5 increased significantly in the lung tissue on day 3 postexposure in 56MnO2 groups (by 1.6 and 2.9 times, respectively, in the highest dose group). Smad7 mRNA expression was also significantly elevated by 30% in the highest dose group of 56MnO2. Our data demonstrated that internal exposure to 56MnO2 induced significant biological responses including gene expression changes in the lungs, while external 60Co-γ irradiation of 2 Gy did not show any changes.
To investigate the biological effects of internal exposure of radioactive 56MnO2 powder, the major radioisotope dust in the soil after atomic bomb explosions, on male reproductive function, the gene expression of the testes and the prostate was examined. Ten-week-old male Wistar rats were exposed to three doses of radioactive 56MnO2 powder (41–100 mGy in whole body doses), stable MnO2 powder, or external 60Co γ-rays (2 Gy). Animals were necropsied on Days 3 and 61 postexposure. The mRNA expressions of testicular marker protein genes and prostatic secretory protein genes were quantified by Q-RT-PCR. On Day 3 postexposure, the testicular gene expressions of steroidogenesis-related enzymes, Cyp17a1 and Hsd3b1, decreased in 56MnO2-exposed groups. Germ cell-specific Spag4 and Zpbp mRNA levels were also reduced. On postexposure Day 61, the Cyp11a1 gene expression became significantly reduced in the testes in the group exposed to the highest dose of 56MnO2, while another steroidogenesis-related StAR gene mRNA level reduced in the 60Co γ-rays group. There were no differences in Spag4 and Zpbp mRNA levels among groups on Day 61. No histopathological changes were observed in the testes in any group following exposure. Expression in the prostatic protein genes, including CRP1, KS3, and PSP94, significantly decreased in 56MnO2-exposed groups as well as in the 60Co γ-rays group on Day 61 postexposure. These data suggest that the internal exposure to 56MnO2 powder, at doses of less than 100 mGy, affected the gene expressions in the testis and the prostate, while 2 Gy of external γ-irradiation was less effective.
We have studied the biological effects of the internal exposure to radioactive manganese-56 dioxide (56MnO2), the major radioisotope dust found in soil after atomic bomb explosions. Our previous study of blood chemistry indicated a possible adverse effect of 56MnO2 on the liver. In the present study, we further examined the effects on the liver by determining changes in hepatic gene expressions. Male Wistar rats were exposed to 56MnO2 particles (three groups with the whole-body doses of 41, 90, and 100 mGy), stable MnO2 particles, or external 60Co γ-rays (2 Gy), and were examined together with the non-treated control group on postexposure day 3 and day 61. No histopathological changes were observed in the liver. The mRNA expression of a p53-related gene, the cyclin-dependent kinase inhibitor 1A, increased in 56MnO2 as well as in γ-ray irradiated groups on postexposure day 3 and day 61. The expression of a stress-responsive gene, nuclear factor κB, was also increased by 56MnO2 and γ-rays on postexposure day 3. However, the expression of cytokine genes (interleukin-6 or chemokine ligand 2) or fibrosis-related TGF-β/Smad genes (Tgfb1, Smad3, or Smad4) was not altered by the exposure. Our data demonstrated that the internal exposure to 56MnO2 particles at less than 0.1 Gy significantly affected the short-term gene expressions in the liver in a similar manner with 2 Gy of external γ-irradiation. These changes may be adaptive responses because no changes occurred in cytokine or TGF-β/Smad gene expressions.
The investigation of the radiation effects of the atomic bombing in Hiroshima and Nagasaki has revealed concerns about the impact of the residual radioactive dust produced in the soil. Manganese-56 is one of the major radioisotopes produced by neutrons from the bomb; hence, we previously examined the biological effects of manganese dioxide-56 (56MnO2) in Wistar rats, in which significant changes were found in the lung. In the present study, ten-week-old male C57BL mice were exposed to three doses of radioactive 56MnO2, stable MnO2 particles, or external γ-rays (2 Gy) to further examine the effects of 56MnO2 in a different species. The estimated absorbed radiation doses from 56MnO2 were 26, 96, and 250 mGy in the lung. The animals were examined at 3, 14, and 70 days post exposure. Histologically, no exposure-related changes were found in the lungs of any group. However, pulmonary mRNA expression of aquaporin 1, which is a useful marker for lung pathophysiology, was significantly elevated at 14 and 70 days, although no such changes were found in the mice exposed to external γ-rays (2 Gy). These data indicated that the inhalation exposure to 56MnO2 particles, with <250 mGy of organ doses, produced significant biological responses in the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.