BackgroundThe aims of this study were to investigate Salmonella contamination in broiler chicken farms and slaughterhouses, to assess the antibiotic resistance profile in avian and human Salmonella isolates, and to evaluate the relationship between avian and human Extended Spectrum β-Lactamase (ESBL)-producing isolates. Salmonella was screened in different sample matrices collected at thirty-two chicken farms and five slaughterhouses. The human isolates were recovered from clinical specimens at the University Teaching Hospital of Constantine (UTH). All suspected colonies were confirmed by MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time OF light) and serotyped. Susceptibility testing against 13 antibiotics including, amoxicillin/clavulanic acid, ticarcillin, cefoxitin, cefotaxime, aztreonam, imipenem, ertapenem, gentamicin, amikacin, ciprofloxacin, colistin, trimethoprim/sulfamethoxazole and fosfomycin, was performed using the disk diffusion method on Mueller-Hinton agar. ESBL-production was screened by the double-disk synergy test and confirmed by molecular characterization using PCR (polymerase chain reaction) amplification and sequencing of ESBL encoding genes. Clonality of the avian and human strains was performed using the Multi Locus Sequencing Typing method (MLST).ResultsForty-five isolated avian Salmonella strains and 37 human collected ones were studied. Five S. enterica serotypes were found in avian isolates (mainly Kentucky) and 9 from human ones (essentially Infantis). 51.11% and 26.6% of the avian isolates were resistant to ciprofloxacin and cefotaxime, respectively, whereas human isolates were less resistant to these antibiotics (13.5% to ciprofloxacin and 16.2% to cefotaxime). Eighteen (12 avian and 6 human) strains were found to produce ESBLs, which were identified as bla CTX-M-1 (n = 12), bla CTX-M-15 (n = 5) and bla TEM group (n = 8). Interestingly, seven of the ESBL-producing strains (5 avian and 2 human) were of the same ST (ST15) and clustered together, suggesting a common origin.ConclusionThe results of the combined phenotypic and genotypic analysis found in this study suggest a close relationship between human and avian strains and support the hypothesis that poultry production may play a role in the spread of multidrug-resistant Salmonella in the human community within the study region.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-1050-3) contains supplementary material, which is available to authorized users.
Aim:The aim of this study was to provide information on the prevalence of Salmonella serotypes and to identify risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria.Materials and Methods:This study was conducted on 32 poultry farms and five slaughterhouses in the province of Skikda (northeastern Algeria). A questionnaire was answered by the poultry farmers and slaughterhouses’ managers. Biological samples (cloacal swabs, droppings, caeca, livers, and neck skins) and environmental ones (water, feed, surface wipes, rinsing water, and sticking knife swabbing) were taken to assess the Salmonella contamination status.Results:Nearly 34.37% of the poultry farms and all the slaughterhouses were contaminated with Salmonella. The isolated Salmonella strains belonged to two major serotypes: Kentucky and Heidelberg followed by Enteritidis, Virginia, and Newport. There was an evident heterogeneous distribution of serotypes in poultry farms and slaughterhouses. Only one factor (earth floor) was significantly associated with Salmonella contamination in poultry houses (p<0.05).Conclusion:A high prevalence rate of Salmonella contamination was found in poultry farms and slaughterhouses in Skikda region. These results showed the foremost hazardous role of poultry production in the spread and persistence of Salmonella contamination in the studied region.
An outbreak of equine influenza (EI) was reported in Algeria between May and July, 2011. The outbreak started in Tiaret, in west province of Algeria, and spread to the other parts of the country affecting almost 900 horses in many provinces. The population studied was composed of 325 horses from different groups of age. Clinical sign expression was age dependent. Indeed, a morbidity rate of 14.9% was observed in horses under 15 months old and a rate of 4.95% in horses over 8 years old. Interestingly, the morbidity rate raised sharply to reach 100% in horses aged between 18 months and 7 years. The virus (H3N8) was detected in nasopharyngeal swabs (n = 11) from non-vaccinated horses using a qRT-PCR targeting a portion of the gene encoding the matrix protein (M). The virus isolates were identified as H3N8 by sequencing the haemagglutinin (HA) and neuraminidase (NA) genes and were named from A/equine/Tiaret/1/2011 to A/equine/Tiaret/10/2011. Alignment of HA1 amino acid sequence confirmed that viruses belong to Clade 2 of the Florida sublineage in the American lineage. Moreover, they are closely related to A/equine/Yokohama/aq13/2010, A/equine/Eyragues/1/2010, A/equine/Bokel/2011 and A/equine/Lichtenfeld/2012. Our data indicate that this strain was also circulating in the European horse population in 2010, 2011 and 2012.
Aim: The present study was undertaken to know the seroprevalence of Mycoplasma synoviae (MS) and Mycoplasma gallisepticum (MG) in broiler and layer chickens in the area of Batna, eastern Algeria. This investigation was conducted during the period from 2008 to 2011. Materials and Methods: A total of 505 sera samples were collected and tested by serum plate agglutination (SPA) test using Mycoplasma gallisepticum and Mycoplasma synoviae antigens (Soleil Diagnostic) to detect the presence of antibodies against MS and MG. Results: The overall prevalence of MS and MG infection in the 27 flocks visited in this investigation were recorded as 66.33% and 69.90% respectively. Seroprevalence of MG infection was found significantly (p<0.05) higher during winter season (61.48%) than in summer (47.74%) while MS infection is more dominant in summer (91.25% against 46.69%). Again this was recorded in different age groups, with significantly higher occurrence in young compared to adult with 85.14% in layer hens and 90.73% in broiler chickens. On the other hand, the seroprevalence of MG and MS infection was found little (p>0.05) higher in large flocks (76.97%) in comparison to small flocks (63.63%). The highest prevalence (76.59%) of mycoplasmal infection in layer hens was found in Lohman strain. Conclusion: It has been found that MG and MS infections are still important disease problems in poultry farms in Algeria.
Aim:The aim of this study was to detect Brucella spp. DNA in milk samples collected from seronegative cows using the real-time polymerase chain reaction (PCR) assay for diagnosis of brucellosis in seronegative dairy cows to prevent transmission of disease to humans and to reduce economic losses in animal production.Materials and Methods:In this study, 65 milk samples were investigated for the detection of Brucella spp. The detection of the IS711 gene in all samples was done by real-time PCR assay by comparative cycle threshold method.Results:The results show that of the 65 DNA samples tested, 2 (3.08%) were positive for Brucella infection. The mean cyclic threshold values of IS711 real-time PCR test were 37.97 and 40.48, indicating a positive reaction.Conclusion:The results of the present study indicated that the real-time PCR appears to offer several advantages over serological tests. For this reason, the real-time PCR should be validated on representative numbers of Brucella-infected and free samples before being implemented in routine diagnosis in human and animal brucellosis for controlling this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.