Aim:The aim of this study was to detect Brucella spp. DNA in milk samples collected from seronegative cows using the real-time polymerase chain reaction (PCR) assay for diagnosis of brucellosis in seronegative dairy cows to prevent transmission of disease to humans and to reduce economic losses in animal production.Materials and Methods:In this study, 65 milk samples were investigated for the detection of Brucella spp. The detection of the IS711 gene in all samples was done by real-time PCR assay by comparative cycle threshold method.Results:The results show that of the 65 DNA samples tested, 2 (3.08%) were positive for Brucella infection. The mean cyclic threshold values of IS711 real-time PCR test were 37.97 and 40.48, indicating a positive reaction.Conclusion:The results of the present study indicated that the real-time PCR appears to offer several advantages over serological tests. For this reason, the real-time PCR should be validated on representative numbers of Brucella-infected and free samples before being implemented in routine diagnosis in human and animal brucellosis for controlling this disease.
Bovine tuberculosis (bTB) caused by Mycobacterium (M.) bovis and M. caprae is a transmissible disease of livestock, notifiable to the World Organization for Animal Health (OIE). BTB particularly affects cattle and small ruminants and can be transmitted to humans thereby posing a significant threat to veterinary and public health worldwide. M. bovis is the principal cause of bTB in Algeria. In order to better understand the route of spreading and elaborate an eradication program, isolation and characterization of mycobacteria from Algerian cattle was performed. Sixty strains belonging to the M. tuberculosis complex were analyzed by spoligotyping, thereof 42 by 19-locus-MIRU-VNTR-typing. Spoligotyping revealed 16 distinguishable patterns (Hunter-Gaston discriminatory index [HGDI] of 0.8294), with types SB0120 (n = 20) and SB0121 (n = 13) being the most frequent patterns, representing 55% of the strains. Analyses based on 19-locus-MIRU-VNTR yielded 32 different profiles, five clusters and one orphan pattern, showing higher discriminatory power (HGDI = 0.9779) than spoligotyping. Seven VNTR-loci [VNTR 577 (alias ETR C), 2163b (QU11b), 2165 (ETR A), 2461 (ETR B), 3007 (MIRU 27), 2163a (QUB11a) and 3232 (QUB 3232)] were the most discriminative loci (HGDI ˃ 0.50). In conclusion, 19-locus-MIRU-VNTR yielded more information than spoligotyping concerning molecular differentiation of strains and better supports the elucidation of transmission routes of M. bovis between Algerian cattle herds.
Background and Aim: There is a worldwide controversy about the choice of microbial flora for use as process hygiene indicators. This study aimed to evaluate the pertinence of using either coliforms or Enterobacteriaceae (EB) as process hygiene indicators in the pasteurized milk production line. Two flora families and total flora were used as bacterial indicators in some stages of pasteurized milk production line to identify the origin of post-pasteurization contamination and compare the results obtained for each flora. In addition, the bacteriological profile of isolated coliforms and EB was developed. Materials and Methods: One thousand and two hundred samples of pasteurized cow milk and surfaces (pipes and tank) at various processing stages were taken from two dairies in the northern region of Algeria. The total microbial flora (TF), total coliforms (TC), thermotolerant coliforms, and EB were enumerated, following the recommendations of ISO 4833:2006, ISO 4832:2006, and ISO 21528-2:2017 methods, respectively. The bacteriological profile was determined using the API 20E and 10S tests (bioMérieux, France). Furthermore, the cleaning efficiency and disinfection protocol of surfaces were evaluated using contact agar slides 1 (Liofilchem™, Italy). Results: Enumeration of the different indicators shows that the highest contamination rate is recorded by the total flora in the two units, 3.28 and 3.78 log CFU/mL, respectively. EB (–0.60 log CFU/mL) at post-pasteurization stage in Unit 1 and coliforms (0.44 log CFU/mL) at the pasteurized packaged milk stage in Unit 2 are the least significant germ families. The lowest compliance rates of bacterial contamination were reported for total flora (82-85%) at the three sampled sites in Unit 2. In comparison, the highest was reported in Unit 1 (99.8%) and 2 (98%) by the EB indicator. Assessing the surface cleaning and disinfection protocol compliance shows that the tank records the highest non-compliance rates for EB and TF (4% and 3%) in Unit 2. EB are represented in both units by various species. Acinetobacter baumannii in Unit 1 and Enterobacter cloacae in Unit 2 are the common species of the three indicator families. Acinetobacter and Enterobacter in Unit 1, Escherichia, Citrobacter, Enterobacter, Klebsiella, and Hafnia in Unit 2 are the most time persistent bacterial genera along the production line. Stenotrophomonas, Serratia, Salmonella, Enterobacter, and Escherichia are common genera in both units. Conclusion: The results obtained show no difference in the use of EB or TC as hygiene indicators. However, if the objective is to identify the species of bacterial populations, using EBs are the most appropriate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.