Abstract-Motivated by applications to sensor, peer-to-peer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join and old nodes leave the network. Algorithms for such networks need to be robust against changes in topology. Additionally, nodes in sensor networks operate under limited computational, communication, and energy resources. These constraints have motivated the design of "gossip" algorithms: schemes which distribute the computational burden and in which a node communicates with a randomly chosen neighbor.We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient method that solves the optimization problem over the network.The relation of averaging time to the second largest eigenvalue naturally relates it to the mixing time of a random walk with transition probabilities derived from the gossip algorithm. We use this connection to study the performance and scaling of gossip algorithms on two popular networks: Wireless Sensor Networks, which are modeled as Geometric Random Graphs, and the Internet graph under the so-called Preferential Connectivity (PC) model.
Cloud data centers host diverse applications, mixing workloads that require small predictable latency with others requiring large sustained throughput. In this environment, today's state-of-the-art TCP protocol falls short. We present measurements of a 6000 server production cluster and reveal impairments that lead to high application latencies, rooted in TCP's demands on the limited buffer space available in data center switches. For example, bandwidth hungry "background" flows build up queues at the switches, and thus impact the performance of latency sensitive "foreground" traffic.To address these problems, we propose DCTCP, a TCP-like protocol for data center networks. DCTCP leverages Explicit Congestion Notification (ECN) in the network to provide multi-bit feedback to the end hosts. We evaluate DCTCP at 1 and 10Gbps speeds using commodity, shallow buffered switches. We find DCTCP delivers the same or better throughput than TCP, while using 90% less buffer space. Unlike TCP, DCTCP also provides high burst tolerance and low latency for short flows. In handling workloads derived from operational measurements, we found DCTCP enables the applications to handle 10X the current background traffic, without impacting foreground traffic. Further, a 10X increase in foreground traffic does not cause any timeouts, thus largely eliminating incast problems.
, whereis the velocity of the mobile nodes. We then describe a scheme that achieves the optimal order of delay for any given throughput. The scheme varies (i) the number of hops, (ii) the transmission range and (iii) the degree of node mobility to achieve the optimal throughput-delay trade-off. The scheme produces a range of models that capture the Gupta-Kumar model at one extreme and the Grossglauser-Tse model at the other. In the course of our work, we recover previous results of Gupta and Kumar, and Grossglauser and Tse using simpler techniques, which might be of a separate interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.