Coronavirus is a large family of viruses that affects humans and damages respiratory functions ranging from cold to more serious diseases such as ARDS and SARS. But the most recently discovered virus causes COVID-19. Isolation at home or hospital depends on one’s health history and conditions. The prevailing disease that might get instigated due to the existence of the virus might lead to deterioration in health. Therefore, there is a need for early detection of the virus. Recently, many works are found to be observed with the deployment of techniques for the detection based on chest X-rays. In this work, a solution has been proposed that consists of a sample prototype of an AI-based Flask-driven web application framework that predicts the six different diseases including ARDS, bacteria, COVID-19, SARS, Streptococcus, and virus. Here, each category of X-ray images was placed under scrutiny and conducted training and testing using deep learning algorithms such as CNN, ResNet (with and without dropout), VGG16, and AlexNet to detect the status of X-rays. Recent FPGA design tools are compatible with software models in deep learning methods. FPGAs are suitable for deep learning algorithms to make the design as flexible, innovative, and hardware acceleration perspective. High-performance FPGA hardware is advantageous over GPUs. Looking forward, the device can efficiently integrate with the deep learning modules. FPGAs act as a challenging substitute podium where it bridges the gap between the architectures and power-related designs. FPGA is a better option for the implementation of algorithms. The design attains 121µW power and 89 ms delay. This was implemented in the FPGA environment and observed that it attains a reduced number of gate counts and low power.
While the world is working quietly to repair the damage caused by COVID-19’s widespread transmission, the monkeypox virus threatens to become a global pandemic. There are several nations that report new monkeypox cases daily, despite the virus being less deadly and contagious than COVID-19. Monkeypox disease may be detected using artificial intelligence techniques. This paper suggests two strategies for improving monkeypox image classification precision. Based on reinforcement learning and parameter optimization for multi-layer neural networks, the suggested approaches are based on feature extraction and classification: the Q-learning algorithm determines the rate at which an act occurs in a particular state; Malneural networks are binary hybrid algorithms that improve the parameters of neural networks. The algorithms are evaluated using an openly available dataset. In order to analyze the proposed optimization feature selection for monkeypox classification, interpretation criteria were utilized. In order to evaluate the efficiency, significance, and robustness of the suggested algorithms, a series of numerical tests were conducted. There were 95% precision, 95% recall, and 96% f1 scores for monkeypox disease. As compared to traditional learning methods, this method has a higher accuracy value. The overall macro average was around 0.95, and the overall weighted average was around 0.96. When compared to the benchmark algorithms, DDQN, Policy Gradient, and Actor–Critic, the Malneural network had the highest accuracy (around 0.985). In comparison with traditional methods, the proposed methods were found to be more effective. Clinicians can use this proposal to treat monkeypox patients and administration agencies can use it to observe the origin and current status of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.