Aqueous solutions of polyoxometalates (POMs) have been shown to have potential as high-capacity energy storage materials due to their potential for multi-electron redox processes, yet the mechanism of reduction and practical limits are currently unknown. Herein, we explore the mechanism of multi-electron redox processes that allow the highly reduced POM clusters of the form {MO 3 } y to absorb y electrons in aqueous solution, focusing mechanistically on the Wells–Dawson structure X 6 [P 2 W 18 O 62 ], which comprises 18 metal centers and can uptake up to 18 electrons reversibly ( y = 18) per cluster in aqueous solution when the countercations are lithium . This unconventional redox activity is rationalized by density functional theory, molecular dynamics simulations, UV–vis, electron paramagnetic resonance spectroscopy, and small-angle X-ray scattering spectra. These data point to a new phenomenon showing that cluster protonation and aggregation allow the formation of highly electron-rich meta-stable systems in aqueous solution, which produce H 2 when the solution is diluted. Finally, we show that this understanding is transferrable to other salts of [P 5 W 30 O 110 ] 15– and [P 8 W 48 O 184 ] 40– anions, which can be charged to 23 and 27 electrons per cluster, respectively.
The gallium(III)-containing heteropolytungstates [Ga4(H2O)10(β-XW9O33)2](6-) (X = As(III), 1; Sb(III), 2) were synthesized in aqueous acidic medium by reaction of Ga(3+) ions with the trilacunary, lone-pair-containing [XW9O33](9-). Polyanions 1 and 2 are isostructural and crystallized as the hydrated sodium salts Na6[Ga4(H2O)10(β-AsW9O33)2]·28H2O (Na-1) and Na6[Ga4(H2O)10(β-SbW9O33)2]·30H2O (Na-2) in the monoclinic space group P21/c, with unit cell parameters a = 16.0218(12) Å, b = 15.2044(10) Å, c = 20.0821(12) Å, and β = 95.82(0)°, as well as a = 16.0912(5) Å, b = 15.2178(5) Å, c = 20.1047(5) Å, and β = 96.2(0)°, respectively. The corresponding tellurium(IV) derivative [Ga4(H2O)10(β-TeW9O33)2](4-) (3) was also prepared, by direct reaction of sodium tungstate, tellurium(IV) oxide, and gallium nitrate. Polyanion 3 crystallized as the mixed rubidium/sodium salt Rb2Na2[Ga4(H2O)10(β-TeW9O33)2]·28H2O (RbNa-3) in the triclinic space group P1̅ with unit cell parameters a = 12.5629(15) Å, b = 13.2208(18) Å, c = 15.474(2) Å, α = 80.52(1)°, β = 84.37(1)°, and γ = 65.83(1)°. All polyanions 1-3 were characterized in the solid state by single-crystal XRD, FT-IR, TGA, and elemental analysis, and polyanion 2 was also characterized in solution by (183)W NMR and UV-vis spectroscopy. Polyanion 2 was used as a homogeneous catalyst toward adenosine triphosphate (ATP) and the DNA model substrate 4-nitrophenylphosphate, monitored by (1)H and (31)P NMR spectroscopy. The encapsulated gallium(III) centers in 2 promote the Lewis acidic synergistic activation of the hydrolysis of ATP and DNA model substrates at a higher rate in near-physiological conditions. A strong interaction of 2 with the P-O bond of ATP was evidenced by changes in chemical shift values and line broadening of the (31)P nucleus in ATP upon addition of the polyanion.
To gain insights into the molecular design, the memory devices of various Cr(iii) complexes have been studied.
Two classes of widely studied luminescent metal complexes are octahedral d (i.e., Ir) and square planar d (i.e., Pt) polypyridyl complexes, which have distinctly different photophysics and photoreactivity. In this study we report a series of d-d Ir-Pt hybrid complexes arising from coordination of metalloligands IrL(benzene-1-thioether-2-thiolate) or Ir(L)(benzene-1,2-dithiolate) anion [L = 2-phenylpyridine (ppy), 2-(2,4-difluorophenyl)pyridine (dfppy), or 1-phenylisoquinoline (piq)] to Pt(terpy) (terpy = 2,2':6',2″-terpyridine). X-ray crystal structures of the Ir-Pt complexes show the IrL and Pt(terpy) chromophores are cofacially oriented with interplanar distances of 3.268-3.442 Å. Density functional theory (DFT) calculations show that the highest occupied molecular orbital and the lowest unoccupied molecular orbital are localized in the IrL and the Pt(terpy), respectively. All the complexes display a low-energy absorption band (λ = 460-534 nm, ε = (0.75-2.13) × 10 M cm), which is attributed to interchromophore-charge-transfer (ICCT) transition, according to time-dependent DFT calculations. The ICCT excited state is emissive, giving long-lived phosphorescence that reaches as low as near-infrared (λ = 668-710 nm, τ = 0.17-0.79 μs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.