Infection with H. pylori pathogen is one of the strongest risk factors for development of gastric cancer. Although these bacteria infect approximately half of the world’s population, only a small fraction of infected individuals develops gastric malignancies. Interactions between host and bacterial virulence factors are complex and interrelated making it difficult to elucidate specific processes associated with H. pylori-induced tumorigenesis. In this study, we found that H. pylori inhibits p14ARF tumor suppressor by inducing its degradation. This effect was found to be strain-specific. Downregulation of p14ARF induced by H. pylori leads to inhibition of autophagy in a p53-independent manner in infected cells. We identified TRIP12 protein as E3 ubiquitin ligase that is upregulated by H. pylori, inducing ubiquitination and subsequent degradation of p14ARF protein. Using isogenic H. pylori mutants, we found that induction of TRIP12 is mediated by bacterial virulence factor CagA. Increased expression of TRIP12 protein was found in infected gastric epithelial cells in vitro and human gastric mucosa of H. pylori-infected individuals.
In conclusion, our data demonstrate a new mechanism of ARF inhibition that may affect host-bacteria interactions and facilitate tumorigenic transformation in the stomach.
Bacterial lipopolysaccharide (LPS) is the most important contributing factor in pathogenesis of bacterial infection in male accessory glands; and it has shown to inhibit testicular steroidogenesis and induce apoptosis. The present study demonstrates that LPS causes mitochondrial dysfunction via suppression of sirtuin 4 (SIRT4); which in turn affects Leydig cell function by modulating steroidogenesis and apoptosis. LC-540 Leydig cells treated with LPS (10 µg/ml) showed impaired steroidogenesis and increased cellular apoptosis. The mRNA and protein expression of SIRT4 were decreased in LPS treated cells when compared to controls. The obtained data suggest that the c-Jun N-terminal kinase (JNK) activation suppresses SIRT4 expression in LPS treated Leydig cells. Furthermore, the overexpression of SIRT4 prevented LPS induced impaired steroidogenesis and cellular apoptosis by improving mitochondrial function. These findings provide valuable information that SIRT4 regulates LPS mediated Leydig cell dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.