The effect of chloride ion on the chlorine dioxide formation in the ClO 2 (-)-HOCl reaction was studied by following .ClO 2 concentration spectrophotometrically at pH 5-6 in 0.5 M sodium acetate. On the basis of the earlier experimental data collected without initially added chloride and on new experiments, the earlier kinetic model was modified and extended to interpret the two series of experiments together. It was found that the chloride ion significantly increases the initial rate of .ClO 2 formation. At the same time, the .ClO 2 yield is increased in HOCl but decreased in ClO 2 (-) excess by the increase of the chloride ion concentration. The two-step hydrolysis of dissolved chlorine through Cl 2 + H 2O left harpoon over right harpoon Cl 2OH (-) + H (+) and Cl 2OH (-) left harpoon over right harpoon HOCl + Cl (-) and the increased reactivity of Cl 2OH (-) compared to HOCl are proposed to explain these phenomena. It is reinforced that the hydrolysis of the transient Cl 2O 2 takes place through a HOCl-catalyzed step instead of the spontaneous hydrolysis. A seven-step kinetic model with six rate parameters (constants and/or ratio of constants) is proposed on the basis of the rigorous least-squares fitting of the parameters simultaneously to 129 absorbance versus time curves measured up to approximately 90% conversion. The advantage of this method of evaluation is briefly outlined.
It is shown and explained in detail by four examples generated from known kinetic models that simplified evaluation procedures--initial rate studies, individual exponential curve fitting method--may inherently lead to inappropriate chemical conclusions, even in the case of relatively simple kinetic systems. It is also shown that in the case of all four examples the simultaneous curve fitting immediately reveals the defectiveness of the kinetic model obtained from the simplified evaluation procedures. We therefore propose the extensive usage of the simultaneous curve fitting of all the kinetic traces to avoid these pitfalls and to find the appropriate kinetic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.