Background Chronic inflammation is believed to be a major mechanism underlying the pathophysiology of type 2 diabetes. Periodontitis is a cause of systemic inflammation. We aimed to assess the effects of periodontal treatment on glycaemic control in people with type 2 diabetes. Methods In this 12 month, single-centre, parallel-group, investigator-masked, randomised trial, we recruited patients with type 2 diabetes, moderate-to-severe periodontitis, and at least 15 teeth from four local hospitals and 15 medical or dental practices in the UK. We randomly assigned patients (1:1) using a computer-generated table to receive intensive periodontal treatment (IPT; whole mouth subgingival scaling, surgical periodontal therapy [if the participants showed good oral hygiene practice; otherwise dental cleaning again], and supportive periodontal therapy every 3 months until completion of the study) or control periodontal treatment (CPT; supra-gingival scaling and polishing at the same timepoints as in the IPT group). Treatment allocation included a process of minimisation in terms of diabetes onset, smoking status, sex, and periodontitis severity. Allocation to treatment was concealed in an opaque envelope and revealed to the clinician on the day of first treatment. With the exception of dental staff who performed the treatment and clinical examinations, all study investigators were masked to group allocation. The primary outcome was between-group difference in HbA,, at 12 months in the intention-to-treat population. This study is registered with the ISRCTN registry, number ISRCTN83229304.
This systematic review reports not only on the clinical and radiographic outcomes, but also evaluates the histological appearance of the socket, along with site specific factors, patient-reported outcomes, feasibility of implant placement and strength of evidence, which will facilitate the decision making process in the clinical practice.
The kinetics of decomposition of aqueous chlorous acid has been reinvestigated at pH 0.7-1.9, ionic strength 1.0 M (HSO 4 -/SO 4 2-), and temperature 25.0 ( 0.1°C. Optical absorbances were collected in the 240-450 nm wavelength range for up to ∼90% decomposition for time series lasting as long as 2 days. The number of absorbing species was investigated by matrix rank analysis; no absorbing intermediate was formed in significant concentration during the decomposition. Of the many mechanistic models tested, the one that fit best included the following reactive intermediates: HOCl, explains the variation in stoichiometric ratio as well as the maximum observed in the initial rate of ClO 2 formation as a function of pH. The kinetics of chlorous acid decomposition cannot be quantitatively fit through the last stages of the reaction without postulating a first-order decomposition. Scission of chlorous acid to give short-lived hydroxyl and chlorine-(II) monoxide is a plausible route for this process. A set of best-fit and literature-derived parameters is presented for the complete mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.