Alternative forms of instrument actuation, camera control and master console ergonomics should be explored to improve instrument precision, sphere of action, size and minimize assistance required.
Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endoscopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most important causes of peptic ulcer disease in high-income countries. Proton pump inhibitors are the current standard treatment; however, safety and long-term adverse effects of using these drugs are attracting more and more concerns in recent years. Using a porcine model of NSAID-related gastric ulcer, we herein show that adipose-derived mesenchymal stem cells (ADMSCs) delivered by endoscopic submucosal injection promoted ulcer healing with less inflammatory infiltration and enhanced reepithelization and neovascularization at day 7 and day 21 when compared with the controls (saline injection). However, only few engrafted ADMSCs showed myofibroblast and epithelial cell phenotype in vivo, suggesting the ulcer healing process might be much less dependent on the stem cell transdifferentiation. Further experiment with submucosal injection of MSC-derived secretome revealed a therapeutic efficacy comparable to that of stem cell transplantation. Profiling analysis showed up-regulation of genes associated with inflammation, granulation formation, and extracellular matrix remodeling at day 7 after injection of MSC-derived secretome. In addition, the extracellular signal–regulated kinase/mitogen-activated protein kinase and the phosphoinositide-3-kinase/protein kinase B pathways were activated after injection of ADMSCs or MSC-derived secretome. Both signaling pathways were involved in mediating the major events critical to gastric ulcer healing, including cell survival, migration, and angiogenesis. Our data suggest that endoscopic submucosal injection of ADMSCs serves as a promising approach to promote healing of NSAID-related peptic ulcer, and the paracrine effectors released from stem cells play a crucial role in this process.
In children with syncope and palpitations, the implantable loop recorder appears to be an excellent method of effecting a "cure" in almost 50% of subjects. For those who remain symptomatic, it is successful in determining cardiac rhythm during symptoms, but the complication rate in children may be higher than that of adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.