Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.
Surface modification of silica nanoparticles with organic functional groups while maintaining colloidal stability remains a synthetic challenge. This work aimed to prepare highly dispersed porous hollow organosilica particles (pHOPs) with amino surface modification. The amino-surface modification of pHOPs was carried out with 3-aminopropyl(diethoxy)methylsilane (APDEMS) under various reaction parameters, and the optimal pHOP-NH2 sample was selected and labelled with fluorescein isothiocyanate (FITC) to achieve fluorescent pHOPs (F-HOPs). The prepared pHOPs were thoroughly characterized by transmission electron microscopy, dynamic light scattering, FT-IR, UV-Vis and fluorescence spectroscopies, and microfluidic resistive pulse sensing. The optimal amino surface modification of pHOPs with APDEMS was at pH 10.2, at 60 °C temperature with 10 min reaction time. The positive Zeta potential of pHOP-NH2 in an acidic environment and the appearance of vibrations characteristic to the surface amino groups on the FT-IR spectra prove the successful surface modification. A red-shift in the absorbance spectrum and the appearance of bands characteristic to secondary amines in the FTIR spectrum of F-HOP confirmed the covalent attachment of FITC to pHOP-NH2. This study provides a step-by-step synthetic optimization and characterization of fluorescently labelled organosilica particles to enhance their optical properties and extend their applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.