Silica nanoparticles (SNPs) belong to the most widely produced nanomaterials nowadays. Particle size distribution (PSD) is a key property of SNPs that needs to be accurately determined for a successful application. Many single particle and ensemble characterization methods are available for the determination of the PSD of SNPs, each having different advantages and limitations. Since most preparation protocols for SNPs can yield bimodal or heterogeneous PSDs, the capability of a given method to resolve bimodal PSD is of great importance. In this work, four different methods, namely transmission electron microscopy (TEM), dynamic light scattering (DLS), microfluidic resistive pulse sensing (MRPS) and small-angle X-ray scattering (SAXS) were used to characterize three different, inherently bimodal SNP samples. We found that DLS is unsuitable to resolve bimodal PSDs, while MRPS has proven to be an accurate single-particle size and concentration characterization method, although it is limited to sizes above 50 nm. SAXS was found to be the only method which provided statistically significant description of the bimodal PSDs. However, the analysis of SAXS curves becomes an ill-posed inverse mathematical problem for broad size distributions, therefore the use of orthogonal techniques is required for the reliable description of the PSD of SNPs.
Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles′ morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.