Van der Waals heterostructures composed of multiple few layer crystals allow the engineering of novel materials with predefined properties. As an example, coupling graphene weakly to materials with large spin–orbit coupling (SOC) allows to engineer a sizeable SOC in graphene via proximity effects. The strength of the proximity effect depends on the overlap of the atomic orbitals, therefore, changing the interlayer distance via hydrostatic pressure can be utilized to enhance the interlayer coupling between the layers. In this work, we report measurements on a graphene/WSe2 heterostructure exposed to increasing hydrostatic pressure. A clear transition from weak localization to weak antilocalization is visible as the pressure increases, demonstrating the increase of induced SOC in graphene.
Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components, utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected, where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Owning to its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits.
Twisted two-dimensional
structures open new possibilities in band
structure engineering. At magic twist angles, flat bands emerge, which
gave a new drive to the field of strongly correlated physics. In twisted
double bilayer graphene dual gating allows changing of the Fermi level
and hence the electron density and also allows tuning of the interlayer
potential, giving further control over band gaps. Here, we demonstrate
that by application of hydrostatic pressure, an additional control
of the band structure becomes possible due to the change of tunnel
couplings between the layers. We find that the flat bands and the
gaps separating them can be drastically changed by pressures up to
2 GPa, in good agreement with our theoretical simulations. Furthermore,
our measurements suggest that in finite magnetic field due to pressure
a topologically nontrivial band gap opens at the charge neutrality
point at zero displacement field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.