Simultaneous reduction and surface functionalization of graphene oxide (GO) was realized by simple refluxing of GO with octa-aminophenyl polyhedral oligomeric silsesquioxanes (OapPOSS) without the use of any reducing agents. The presence of OapPOSS made the hydrophilic GO hydrophobic, evidenced by the good dispersion of the OapPOSS-reduced GO (OapPOSS-rGO) in tetrahydrofuran solvent. The structure of OapPOSS-rGO was confirmed by XPS, FTIR and TEM. Morphologic study showed that, due to the good interfacial interaction between the functionalized graphene and epoxy, OapPOSS-rGO was dispersed well in the matrix. With the incorporation of 2.0 wt% of OapPOSS-rGO, the onset thermal degradation temperature of epoxy composite was significantly increased by 43 o C. Moreover, the peak heat release rate, total heat release and CO production rate values of OapPOSS-rGO/EP were significantly reduced by 49%, 37% and 58%, respectively, 2 compared to that of neat epoxy. This dramatically reduced the fire hazards were mainly attributed to the synergestic effect of OapPOSS-rGO: the adsorption and barrier effect of reduced graphene oxide inhibited the heat and gas release and promoted the formation of graphitized carbons, while OapPOSS improved the thermal oxidative resistance of the char layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.