Although the theory of complex Banach algebras is by now classical, the first systematic exposition of the theory of real Banach algebras was given by Ingelstam [5] as late as 1965. More recently, further attention to real Banach algebras was paid in 1970 [1], where, among other things, the (real) standard algebras on finite open Klein surfaces were introduced. Generalizing these considerations, real uniform algebras were studied in [7] and [6].In the present paper, an attempt is made to develop the theory of real function algebras (see Section 1 for the definition) along the lines of the complex function algebras. Although the real function algebras are not structurally different from the real uniform algebras introduced in [7], they are easier to deal with since their elements are actually (complex-valued) functions.
Several aspects of the convergence of a double series in the sense of Pringsheim are considered in analogy with some well-known results for single series. They include various tests for absolute convergence and also criteria for convergence of the Cauchy product. Some errors in the works of earlier authors are corrected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.