Optical microscopy based on waveguide chips significantly reduces the complexity of the entire optical setup, enabling miniaturization by completely removing the excitation light path from the microscope. Instead, waveguides which tightly confine the guided light by total internal reflection due to a high refractive index contrast (HIC) to the surrounding media such as water and cells are used to deliver the illumination light to the sample. The evanescent field on top of the waveguide can be utilized for total internal reflection fluorescence (TIRF) excitation over an almost arbitrarily wide FOV that is intrinsically independent of the detection objective lens and in principle only limited by the waveguide design. Evanescent field excitation using waveguides was first introduced by Grandin et al. 17 , where a slab waveguide was used to generate an evanescent field over the large stretch of the waveguide chip. Slab waveguides (Fig. 1a) Here, we demonstrate waveguide chip-based super-resolution fluorescence imaging by two complementary approaches using ESI and dSTORM. The high intensity in the evanescent field generated by the HIC waveguide material is used for optical switching of fluorophores as required by dSTORM. In addition, the intrinsically multi-mode interference pattern within the waveguide is used to generate fluctuating intensity patterns for ESI. To demonstrate the applicability of waveguide chip-based super-resolution microscopy we visualize the connection of the actin cytoskeleton and plasma membrane fenestrations in liver sinusoidal endothelial cells (LSECs). RESULTS Chip-based single molecule localization microscopyThe performance of chip-based dSTORM is shown by imaging immunostained microtubules in rat LSECs 26 plated directly on the waveguide (Fig. 2a). Measuring the lateral profile along one straight microtubule filament reveals a hollow structure 27 which has been used earlier in localization microscopy as a benchmark sample [28][29][30] , discussed in detail in 31 . This shows a resolution of better than 50 nm ( Fig. 2b), confirmed by full-width-at-half-maximum (FWHM) values, localization precision 32 , and Fourier ring correlation 33,34 (FRC) calculations ( Supplementary Fig. 1). The resolution capability was further investigated by using DNA origami nanorulers that provide markers at (50 ± 5) nm distance as references. These can be clearly resolved in chip-based dSTORM (Fig. 2c,d, Supplementary Fig. 2) which shows a comparable performance to the widely used architecture of an inverted TIRF dSTORM setup (Fig. 2c,d, Supplementary Fig. 3).As an advantage over conventional setups, waveguide chip-based nanoscopy greatly benefits from the fact that the fluorescence excitation is independent of the detection objective lens. As fluorescence is excited by the evanescent field of the waveguide, the technique provides optical sectioning and excellent signal to background ratios at penetration depths below 200 nm ( Supplementary Fig. 4, Supplementary Fig. 5, Video 1), similar to objective-based TIRF...
Waveguide chip-based microscopy reduces the complexity of total internal reflection fluorescence (TIRF) microscopy, and adds features like large field of view illumination, decoupling of illumination and collection path and easy multimodal imaging. However, for the technique to become widespread there is a need of low-loss and affordable waveguides made of high-refractive index material. Here, we develop and report a low-loss silicon nitride (Si 3 N 4 ) waveguide platform for multi-color TIRF microscopy. Single mode conditions at visible wavelengths (488-660 nm) were achieved using shallow rib geometry. To generate uniform excitation over appropriate dimensions waveguide bends were used to filter-out higher modes followed by adiabatic tapering. Si 3 N 4 material is finally shown to be biocompatible for growing and imaging living cells.
Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.
Optical nanoscopy techniques can image intracellular structures with high specificity at sub-diffraction limited resolution, bridging the resolution gap between optical microscopy and electron microscopy. So far conventional nanoscopy lacks the ability to generate high throughput data, as the imaged region is small. Photonic chip-based nanoscopy has demonstrated the potential for imaging large areas, but at a lateral resolution of 130 nm. However, all the existing super-resolution methods provide a resolution of 100 nm or better. In this work, chip-based nanoscopy is demonstrated with a resolution of 75 nm over an extraordinarily large area of 0.5 mm x 0.5 mm, using a low magnification and high N.A. objective l ens. Furthermore, the performance of chip-based nanoscopy is benchmarked by studying the localization precision and illumination homogeneity for different waveguide widths. The advent of large field-of-view chip-based nanoscopy opens up new routes in diagnostics where high throughput is needed for the detection of non-diffuse disease, or rare events such as the early detection of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.