Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.
Surface enhanced Raman scattering (SERS) is studied from optically trapped dielectric spheres partially covered with silver colloids in a solution with SERS active molecules. The Raman scattering and Brownian motion of the sphere are simultaneously measured to reveal correlations between the enhancement of the Raman signal and average position of the sphere. The correlations are due to the momenta transfer of the emitted Raman photons from the probe molecules. The addition of a mechanical force measurement provides a different dimension to the study of Raman processes.
Abstract:We demonstrate that Raman spectroscopy can be used to characterize and identify particles that are trapped and propelled along optical waveguides. To accomplish this, microscopic particles on a waveguide are moved along the waveguide and then individually addressed by a focused laser beam to obtain their characteristic Raman signature within 1 second acquisition time. The spectrum is used to distinguish between glass and polystyrene particles. After the characterization, the particles continue to be propelled along the straight waveguide. Alternatively, a waveguide loop with a gap is also investigated, and in this case particles are held in the gap for characterization before they are released.
Microparticles can be trapped and propelled by the evanescent field of optical waveguides. As the evanescent field only stretches 100-200 nm from the surface of the waveguide, only the lower caps of the microparticles interact directly with the field. This is taken advantage of by trapping hollow glass spheres on waveguides in the same way as solid glass spheres. For the chosen waveguide, numerical simulations show that hollow microspheres with a shell thickness above 60 nm can be stably trapped, while spheres with thinner shells are repelled. The average refractive index of the sphere-field intersection volume is used to explain the result in a qualitative way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.