Superhydrophobicity is of interest for practical applications such as water repellency, self-cleaning, stain resistance, antibacterial properties, and oil−water separation. In this work, a superhydrophobic coating on cotton fabric is prepared by simple immersion in TiO 2 nanoparticles and perfluorodecyltriethoxysilane solution. Its antiwetting properties, surface morphology, and functionality are characterized. The cotton fabric shows superhydrophobicity with a water static contact angle of 169.3 ± 2.1°and tilt angle of 6.3 ± 2.0°. The coating is also characterized by performing stability tests, and it shows excellent mechanical durability, chemical stability, and thermal stability. Additionally, the water droplet dynamic on the coated surface is also studied. The coated cotton fabric exhibits excellent self-cleaning, stain resistance, rust stain resistance, anti-water absorption, and antibacterial properties. It can also be used in oil−water separation with a high separation efficiency and excellent reusability.
Superoleophobicity is of interest for practical applications such as liquid repellency, self-cleaning, stain resistance, anti-bacterial properties and oil–water separation. In this work, the superoleophobic coating on cotton fabric was applied by simple immersion in TiO
2
nanoparticles, perfluorodecyltriethoxysilane and tertraethylorthosilicate solution. Its anti-wetting properties, surface morphology and functionality were characterized. The coated cotton fabric shows superoleophobicity with oil (surface tension more than 27 mN m
−1
) contact angle of 152° and tilt angle of 6°. Furthermore, the superoleophobic cotton fabric was demonstrated to exhibit self-cleaning, stain resistance, mechanical durability, chemical stability, thermal stability, anti-bacterial properties and oil–water separation capabilities.
This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.