The creep test is one of the important approaches to determining some mechanical properties of composite materials. This study was carried out to investigate the creep behaviour of an epoxy composite material that was reinforced with Y2O3 powder at weight ratios of 2%, 7%, 12%, 17% and 22%. Each volume ratio was subjected to five loads over the range of 1N to5N at a constant temperature of 16 ± 2°C. In this work, creep behaviour, stress and elasticity modulus were studied through experimental and numerical analyses. Results showed that increasing the weight ratio of Y2O3 powder enhanced creep characteristics.
Renewable resources are used to create useful, biologically sustainable materials. It has the potential to minimize waste while also challenging existing research and developments. Several researchers have concentrated their efforts on natural fiber composites. Natural fibers include plant, mineral, and animal fibers. In this project fish scales, a bio-waste, were used as a reinforcing agent in polyester/polystyrene for the fabrication of composite materials in the different weight fractions of 0, 6, 7, 9, and 11%, at a constant load of 1 N and temperature of 20 and 26°C. The hand layup technique was used to create the fabrication setup for composite materials. The creep behavior, modulus of elasticity, and stress were studied experimentally.
This work represents a finite element analysis of free vibration of isotropic plates with different cutout shapes, areas, locations and aspect ratios. Modal analysis was carried out using the ANSYS APDL software to evaluate the fundamental frequencies. ANSYS model was validated in the first stage and showed good agreement with the selected literature works. Furthermore, the selected cutout parameters were investigated to assess which parameter is more effective on the frequency. It is found that these parameters was overlapping, therefore Design of Experiments was conducted. Results revealed that the aspect ratio of the cutouts is the most significant factor on the fundamental frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.