Sleipner is a commercial CO2 storage site in the North Sea with good constraints from monitoring data, but also with some significant uncertainties regarding temperature, pressure and gas/brine behavior. At Sleipner, we have used high-quality repeated seismic and gravimetric surveys for monitoring and calibrating the reservoir uncertainties. To model the CO2 behavior we have used two main approaches: a) traditional reservoir simulations, using black oil and compositional fluid descriptions; and b) invasion percolation simulations, using threshold pressure and fluid density descriptions that assume the dominance of capillary and gravity forces. The key findings from the study are: The invasion percolation simulation gave the best initial match to observed data, leading us to reassess the input assumptions for the black oil and compositional simulations. By taking into account gravity segregation and modifying the reservoir simulation input data, we were able to get a much better match for the black oil and compositional simulations. There is still scope for further optimization and history matching, however, this study has reduced the range of domain variables leading to an improved understanding of the flow processes involved in geological storage of CO2 in saline formations. The study has led us to conclude that we can make realistic and predictive CO2 storage models provided that the site-specific conditions are honored, including reservoir and fluid property characterization. The necessary tight constraints on input parameters are achieved by calibration against monitoring data. Our study illustrates both a rather novel approach to modeling CO2 storage and the need for improved input to conventional simulators. Application of our approach to other CO2 storage sites will help in achieving more realistic understanding of CO2 storage, thereby contributing to the maturation of CO2 storage technology worldwide.
Understanding of fault seal is crucial for assessing the storage capacity and containment risks of CO2 storage sites, as it can significantly affect the projects on across-fault and along-fault migration/leakage risking, as well as reservoir pressure predictions. We present a study from the Smeaheia area in the northern Horda Platform offshore Norway, focusing on two fault-bounded structural closures, namely Alpha and Beta structures. We aim to use this study to improve the geological understanding of the northern Horda Platform for CO2 storage scale-up potentials and illustrate the importance of fault seal analysis in containment risk assessment and storage capacity evaluation of a CO2 storage project. Our containment risk assessment shows that the Alpha structure has low fault-related containment risks; thus it has a potential value to be an additional storage target. The Beta structure shows larger fault-related containment risks due to juxtaposition of the prospective storage aquifer with the basement across the Øygarden fault system. The storage capacity of Smeaheia will be determined by the long-term dynamic interplay between pressure depletion and recharging. Our study shows that across-fault pressure communication between Smeaheia and the depleting Troll reservoir is likely through several relay-ramps of the Vette fault system. However, Smeaheia also shows pressure recharging potentials, such as through the subcropping areas at the Base Nordland Unconformity. The depletion observed in the newly drilled well 32/4-3S gives a good validation point for our fault seal predictions and provides valuable insights for future dynamic simulations.Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage
Presently, the only offshore project for enhanced oil recovery using carbon dioxide, known as CO2-EOR, is in Brazil. Several desk studies have been undertaken, without any projects being implemented. The objective of this review is to investigate barriers to the implementation of large-scale offshore CO2-EOR projects, to identify recent technology developments, and to suggest non-technological incentives that may enable implementation. We examine differences between onshore and offshore CO2-EOR, emerging technologies that could enable projects, as well as approaches and regulatory requirements that may help overcome barriers. Our review shows that there are few, if any, technical barriers to offshore CO2-EOR. However, there are many other barriers to the implementation of offshore CO2-EOR, including: High investment and operation costs, uncertainties about reservoir performance, limited access of CO2 supply, lack of business models, and uncertainties about regulations. This review describes recent technology developments that may remove such barriers and concludes with recommendations for overcoming non-technical barriers. The review is based on a report by the Carbon Sequestration Leadership Forum (CSLF).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.