The COVID-19 pandemic is an emerging respiratory infectious disease, having a significant impact on the health and life of many people around the world. Therefore, early identification of COVID-19 patients is the fastest way to restrain the spread of the pandemic. However, as the number of cases grows at an alarming pace, most developing countries are now facing a shortage of medical resources and testing kits. Besides, using testing kits to detect COVID-19 cases is a time-consuming, expensive, and cumbersome procedure. Faced with these obstacles, most physicians, researchers, and engineers have advocated for the advancement of computer-aided deep learning models to assist healthcare professionals in quickly and inexpensively recognize COVID-19 cases from chest X-ray (CXR) images. With this motivation, this paper proposes a CovidMulti-Net architecture based on the transfer learning concept to classify COVID-19 cases from normal and other pneumonia cases using three publicly available datasets that include 1341, 1341, and 446 CXR images from healthy samples and 902, 1564, and 1193 CXR images infected with Viral Pneumonia, Bacterial Pneumonia, and COVID-19 diseases. In the proposed framework, features from CXR images are extracted using three well-known pre-trained models, including DenseNet-169, ResNet-50, and VGG-19. The extracted features are then fed into a concatenate layer, making a robust hybrid model. The proposed framework achieved a classification accuracy of 99.4%, 95.2%, and 94.8% for 2-Class, 3-Class, and 4-Class datasets, exceeding all the other state-of-the-art models. These results suggest that the CovidMulti-Net frameworks ability to discriminate individuals with COVID-19 infection from healthy ones and provides the opportunity to be used as a diagnostic model in clinics and hospitals. We also made all the materials publicly accessible for the research community at: https://github.com/saikat15010/CovidMulti-Net-Architecture.git.
Reinforcement learning (RL) is an extensively applied control method for the purpose of designing intelligent control systems to achieve high accuracy as well as better performance. In the present article, the PID controller is considered as the main control strategy for brushless DC (BLDC) motor speed control. For better performance, the fuzzy Q-learning (FQL) method as a reinforcement learning approach is proposed to adjust the PID coefficients. A comparison with the adaptive PID (APID) controller is also performed for the superiority of the proposed method, and the findings demonstrate the reduction of the error of the proposed method and elimination of the overshoot for controlling the motor speed. MATLAB/SIMULINK has been used for modeling, simulation, and control design of the BLDC motor.
Agile methods promise to achieve high productivity and provide high-quality software. Agile software development is the most important approach that has spread through the world of software development over the past decade. Software team productivity measurement is essential in agile teams to increase the performance of software development. Due to the prevalence of agile methodologies and increasing competition of software development companies, software team productivity has become one of the crucial challenges for agile software companies and teams. Awareness of the level of team productivity can help them to achieve better estimation results on the time and cost of the projects. However, to measure software productivity, there is no definitive solution or approach whether in traditional and agile software development teams that lead to the occurrence of many problems in achieving a reliable definition of software productivity. Hence, this study aims to propose a statistical model to assess the team’s productivity in agile teams. A survey was conducted with forty software companies and measured the impact of six factors of the team on productivity in these companies. The results show that team effectiveness factors including inter-team relationship, quality conformance by the team, team vision, team leader, and requirements handled by the team had a significant impact on the team’s productivity. Moreover, the results also state that inter-team relations affect the most on software teams’ productivity. Finally, the model fit test showed that 80% of productivity depends on team effectiveness factors.
Retails and shopping centers have become essential to today’s lifestyle. Furthermore, as modern shopping venues, retail centers' social role contributes to its popularity and profitability. The social motive of customers for shopping is beyond acquiring their crucial purchases. These advantages favor retail centers and improve the level of social sustainability and its relevant concepts. Given that relatively little study has been studied on the impact of retail centers' social role as places for interactional and recreational activities on customers' behavior in these centers and its relation to social sustainability. Two hypotheses were raised that show the effect of time travel duration and shop variety on increasing the percentage of users who spend their leisure time and recreational activities in two analogous retail centers. The result of research regarding the first hypothesis reveals that there is an interaction between time travel duration and shoppers' motivation. Furthermore, the results revealed that half of both retail center goers who spend more than 10 minutes to arrive at the retail centers prefer to do leisure activities and browsing than shopping. Therefore, the majority of individuals are from further distances, indicating longer trips can be one of the factors for willing to spend more leisure time and recreational activities. The second hypothesis reveals that shop variety can be one of the main reasons for attracting users to spend their leisure time and browse in both retail centers. There is a significant correlation between shop variety and customers’ motivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.