Oxidative stress damage to renal epithelial cells is the main pathological factor of calcium oxalate calculi formation. The development of medicine that could alleviate oxidative damage has become the key to the prevention and treatment of urolithiasis. Herein, porous nanorods CeO2 nanoparticles (CNPs) were selected from CeO2 with different morphologies as an antioxidant reagent to suppress kidney calcium oxalate crystal depositions with excellent oxidation resistance due to its larger specific surface area. The reversible transformation from Ce3+ to Ce4+ could catalyze the decomposition of excess free radicals and act as a biological antioxidant enzyme basing on its strong ability to scavenge free radicals. The protection capability of CNPS against oxalate-induced damage and the effect of CNPS on calcium oxalate crystallization were studied. CNPS could effectively reduce reactive oxygen species production, restore mitochondrial membrane potential polarity, recover cell cycle progression, reduce cell death, and inhibit the formation of calcium oxalate crystals on the cell surface in vitro. The results of high-throughput sequencing of mRNA showed that CNPs could protect renal epithelial cells from oxidative stress damage caused by high oxalate by suppressing the expression gene of cell surface adhesion proteins. In addition, CNPS can significantly reduce the pathological damage of renal tubules and inhibit the deposition of calcium oxalate crystals in rat kidneys while having no significant side effect on other organs and physiological indicators in vivo. Our results provide a new strategy for CNPS as a potential for clinical prevention of crystalline kidney injury and crystal deposition.
Background The interaction between urinary microcrystals and renal epithelial cells is closely related to kidney stone formation. However, the mechanism of cell state changes that affect crystal–cell interaction remains unclear. Methods This study investigated the relationship between the sulfate group (–OSO 3 − ) content in Porphyra yezoensis polysaccharide (PYP) and the ability to repair damaged cells, as well as the changes in cell adhesion and endocytosis of nano-calcium oxalate monohydrate (COM) crystals before and after PYP repair of damaged renal tubular epithelial cells. The sulfur trioxide–pyridine method was used to sulfate PYP (–OSO 3 − content of 14.14%), and two kinds of sulfated PYPs with –OSO 3 − content of 20.28% (SPYP1) and 27.14% (SPYP2) were obtained. The above three PYPs were used to repair oxalate-damaged human proximal tubular epithelial cells (HK-2), and the changes in the biochemical indicators of the cells before and after the repair and the changes in cell adhesion and endocytosis of nano-COM crystals were detected. Results After repair by PYPs, the cell viability increased, the number of reactive oxygen species decreased, and the reduction of mitochondrial membrane potential and the release of intracellular Ca 2+ were suppressed. The cells repaired by PYPs inhibited the adhesion of nano-COM crystals while promoting the endocytosis of the adhered crystals. The endocytosed crystals mainly accumulated in the lysosome. The ability of PYPs to repair cell damage, inhibit crystal adhesion, and promote crystal endocytosis was enhanced when the –OSO 3 − content increased. Among them, SPYP2 with the highest –OSO 3 − content showed the best biological activity. Conclusion SPYP2 showed the best ability to repair damaged cells, followed by SPYP1 and PYP. SPYP2 may become a potential green drug that inhibits the formation and recurrence of calcium oxalate stones.
Objective: Renal epithelial cell injury and cell−crystal interaction are closely related to kidney stone formation. Methods: This study aims to explore the inhibition of endocytosis of nano-sized calcium oxalate monohydrate (nano-COM) crystals and the cell protection of corn silk polysaccharides (CCSPs) with different carboxyl contents (3.92, 7.75, 12.90, and 16.38%). The nano-COM crystals protected or unprotected by CCSPs were co-cultured with human renal proximal tubular epithelial cells (HK-2), and then the changes in the endocytosis of nano-COM and cell biochemical indicators were detected. Results: CCSPs could inhibit the endocytosis of nano-COM by HK-2 cells and reduce the accumulation of nano-COM in the cells. Under the protection of CCSPs, cell morphology is restored, intracellular superoxide dismutase levels are increased, lipid peroxidation product malondialdehyde release is decreased, and mitochondrial membrane potential and lysosomal integrity are increased. The release of Ca 2+ ions in the cell, the level of cell autophagy, and the rate of cell apoptosis and necrosis are also reduced. CCSPs with higher carboxyl content have better cell protection abilities. Conclusion: CCSPs could inhibit the endocytosis of nano-COM crystals and reduce cell oxidative damage. CCSP3, with the highest carboxyl content, shows the best biological activity.
Background: The damage to renal tubular epithelial cells is closely related to the formation of kidney stones. At present, research on drugs that can protect cells from damage remains limited. Methods: This study aims to explore the protective effects of four different sulfate groups (−OSO 3 − ) of Laminaria polysaccharides (SLPs) on human kidney proximal tubular epithelial (HK-2) cells and determine the difference in the endocytosis of nano-sized calcium oxalate monohydrate (COM) crystals before and after protection. COM with a size of 230 ± 80 nm was used to damage HK-2 cells to establish a damage model. The protection capability of SLPs (LP0, SLP1, SLP2, and SLP3) with −OSO 3 − contents of 0.73, 15, 23, and 31%, respectively, against COM crystal damage and the effect of SLPs on the endocytosis of COM crystals were studied. Results: Compared with that of the SLPunprotected COM-injured group, the cell viability of the SLP-protected group was improved, healing capability was enhanced, cell morphology was restored, production of reactive oxygen species was reduced, mitochondrial membrane potential and lysosome integrity were increased, intracellular Ca 2+ level and autophagy were decreased, cell mortality was reduced, and internalized COM crystals were lessened. The capability of SLPs to protect cells from damage and inhibit the endocytosis of crystals in cells enhanced with an increase in the −OSO 3 − content of SLPs. Conclusions: SLPs with a high −OSO 3 − content may become a potential green drug for preventing the formation of kidney stones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.