Due to the high robustness to artifacts, steady-state visual evoked potential (SSVEP) has been widely applied to construct high-speed brain-computer interfaces (BCIs). Thus far, many spatial filtering methods have been proposed to enhance the target identification performance for SSVEP-based BCIs, and task-related component analysis (TRCA) is among the most effective ones. In this paper, we further extend TRCA and propose a new method called Latency Aligning TRCA (LA-TRCA), which aligns visual latencies on channels to obtain accurate phase information from task-related signals. Based on the SSVEP wave propagation theory, SSVEP spreads from posterior occipital areas over the cortex with a fixed phase velocity. Via estimation of the phase velocity using phase shifts of channels, the visual latencies on different channels can be determined for inter-channel alignment. TRCA is then applied to aligned data epochs for target recognition. For the validation purpose, the classification performance comparison between the proposed LA-TRCA and TRCA-based expansions were performed on two different SSVEP datasets. The experimental results illustrated that the proposed LA-TRCA method outperformed the other TRCA-based expansions, which thus demonstrated the effectiveness of the proposed approach for enhancing the SSVEP detection performance.
Various spatial filters have been proposed to enhance the target identification performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). The current methods only extract the target-related information from the corresponding stimulus to learn the spatial filter parameter. However, the SSVEP data from neighboring stimuli also contain frequency information of the target stimulus, which could be utilized to further improve the target identification performance. In this paper, we propose a new method incorporating SSVEPs from the neighboring stimuli to strengthen the target-related frequency information. First, The spatial filter is obtained by maximizing the summation of covariances of SSVEP data corresponding to the target and its neighboring stimuli. Then the correlation features between spatially filtered templates and test data are calculated for target detection. For the performance evaluation, we implemented the offline experiment using the 40class benchmark dataset from 35 subjects and the 12-target selfcollected dataset from 11 subjects. Compared with the stateof-art spatial filtering methods, the proposed method showed superiority in classification accuracy and information transfer rate (ITR). The comparison results demonstrate the effectiveness of the proposed spatial filter for target identification in SSVEPbased BCIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.