We calculate near-source broadband (0-10 Hz) seismograms by combining low-frequency three-dimensional (3D) finite-difference seismograms (0-0.5 Hz) computed in a 3D velocity model using site-specific scattering Green's functions for random, isotropic scattering media. The scattering Green's functions are convolved with a slip-rate function to form local scattering operators (scatterograms), which constitute the high-frequency scattered wave field. The low-frequency and highfrequency scatterograms are then combined in the frequency domain to generate broadband waveforms. Our broadband method extends the Mai et al. (2010) approach by incorporating dynamically consistent source-time functions and accounting for finite-fault effects in the computation of the high-frequency waveforms. We used the proposed method to generate broadband ground motions at 44 sites located 5-100 km from the fault, for M w 7.7 earthquake scenarios (TeraShake) on the southern San Andreas fault, which include north-to-south, south-to-north, and bilateral rupture propagation from kinematic and spontaneous dynamic rupture models. The broadband ground motions computed with the new method are validated by comparing peak ground acceleration, peak ground velocity, and spectral acceleration with recently proposed ground-motion prediction equations (GMPEs). Our simulated ground motions are consistent with the median ground motions predicted by the GMPEs. In addition, we examine overturning probabilities for 18 precariously balanced rock sites (PBR). Our broadband synthetics for the M w 7.7 TeraShake scenarios show no preferred rupture direction on the southern San Andreas fault but are inconsistent with the existence of PBRs at several of the sites analyzed.
Reliable ground-motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self-consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate-to-large strike-slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude M w 6-8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise-time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local risetime variations and supershear rupture speed. By applying the proposed PD source characterization to several well-recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground-motion simulation tools for more physically reliable prediction of shaking in future earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.