In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.
We solve the site-site Ornstein-Zernike equation using the Percus-Yevick closure for binary hard-sphere mixture. We calculate an excess chemical potential for the mixture’s diameter ratios of 0.3, 0.5, 0.6 and 0.9, and at packing fraction of 0.49 using the analytical expression. Our numerical results are in good agreement with those in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.