In this work we employ the split-step technique combined with a Legendre pseudospectral representation to solve various time-dependent GrossPitaevskii equations (GPE). Our findings based on the numerical accuracy of this approach applied for one-dimensional (1D) and two-dimensional (2D) problems show that it can provide accurate and stable solutions. Moreover, this approach has been applied to study the dynamics of the Bose-Einstein condensate which is modeled with the GPE. The breathing of condensate with a repulsive and attractive interactions trapped in 1D and 2D harmonic potentials has been simulated as well.
We solve the site-site Ornstein-Zernike equation using the Percus-Yevick closure for binary hard-sphere mixture. We calculate an excess chemical potential for the mixture’s diameter ratios of 0.3, 0.5, 0.6 and 0.9, and at packing fraction of 0.49 using the analytical expression. Our numerical results are in good agreement with those in the literature.
An integral equation theory combined with Percus Yevick and Martynov-Sarkisov approximations has been applied for hard molecular solution in which the solutes are spherical and a tangent homonuclear diatomic dumbbell particles, and the solvent is a tangent homonuclear dumbbell fluid. At infinite dilution the excess chemical potentials for the solutes have been determined for reduced solvent densities of 0.1 to 0.9, and for diameter ratio values of the spheres of 0.5, 1, 1.5, and 2. Our findings for excess chemical potential have been compared with values obtained with analytical expression and Monte-Carlo data in literature. For the reduced densities less than 0.7, all values are in good agreement, however for higher densities than it the numerically obtainedvalues from Martynov-Sarkisov approximation show better agreements with analytically obtained values and literature data than those from Percus-Yevick approximation.
Хоёр атомт молекуляр уусгагчид ууссан нэг атомт, хос атомт уусагчдын илүүдэл химийн потенциал
Хураангуй: Хатуу-бөмбөлөг потенциалт молекуляр уусмалд интеграл тэгшитгэлийн онолыг Перкус-Иевикийн болон Мартынов-Саркисовын ойролцоололд хэрэглэв. Энэ системд уусгагч нь шүргэлцсэн ижил-бөмбөлөгт молекуляр шингэн, харин уусагч нь нэг атомт ба хоёр-атомт шүргэлцсэн ижил-бөмбөлөгт молекуляр системүүд болно. Уусагч нь бүрэн ууссан үеийн уусагчийн илүүдэл химийн потенциалыг уусагч, уусгагчийн бөмбөлгийн диаметрийн харьцааны 0.5, 1, 1.5, 2 утгуудад уусгагчийн хураангуйлсан нягт 0.1–0.9 үед тооцоолов. Тооцоолсон үр дүнгээ аналитик болон Монте-Карло аргаар бодсон үр дүнтэй харьцуулахад нягт нь 0.7-аас бага үед илүү сайн тохирч байна. Харин нягт нь үүнээс их үед, тухайлбал, молекуляр уусагчийн хувьд Мартынов-Саркисовын ойролцоолол нь аналитик ба Монте-Карло аргын үр дүнд илүү дөхсөн үр дүн өгч байна.
Түлхүүр үг: Перкус-Иевик, Мартынов-Саркисов, интеграл тэгшитгэл, Монте-Карло, бөмбөлөг, молекуляр шингэн
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.